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Abstract: The main focus of this paper is the analysis of modern methods of algorithmic plant generation. First, a brief 

introduction is given to the necessary formalism: Lindenmayer system. It is followed by a description of 

each stage of plant generation process. These include algorithms for obtaining: leaf venation graph, leaf 

texture, stem texture, and the geometry and topology of the whole plant. In particular, the following 

approaches have been used: textures are obtained from transformed noise, a general plant description is 

generated with a parametric Lindenmayer system and a purpose-built particle-based algorithm is used to 

simulate leaf venation. The last section gives a detailed description of four sample systems used to generate 

different plants, outlining the reasons why a given system gives the desired graphical result.  

1 INTRODUCTION 

It is beyond doubt that plant modeling is one of the 

milestones that computer graphics needs to achieve 

to finally get to the holy grail of movie-quality real-

time image synthesis for games and other virtual 

worlds. Indeed, after programmers mastered the 

ways to reproduce simpler elements of our world on 

the computer screen, it is now primarily in the 

foliage that the struggle goes on to stun the user with 

the realism of artificial imagery. While each new 

generation of games presents a considerable 

improvement over its predecessors, the results are 

still not entirely satisfying and usually apply to only 

a specific class of plants. Therefore plant generation 

truly stands out as an area that is worthwhile to 

research into and learn about. 

With most objects, realistic display boils down to 

hand-crafting a model with a polygon count 

sufficient to display the necessary detail. This 

approach has quite limited use because no model 

designer could possibly reproduce the level of 

complexity represented by a plant, if the model is to 

be looked at from a close enough distance. Also, it is 

impossible to achieve the variety of plants within the 

same species, or trace the development of plants 

over time with manual modeling. Therefore we need 

a descriptive formalism that enables us to compress 

the plant structure into a workable formula that can 

be hand-modified and intuitively understood. In fact, 

it is one of the central concepts of mathematics to 

describe some aspect of the structure of a complex 

object in a simple fashion. One feature of plants that 

seems to be helpful in doing so is the fact that they 

display a certain degree of self-similarity. Of course, 

this fractal-like behavior does not encompass every 

aspect of the plant at every scale, but still, it is quite 

helpful. In this respect, this paper describes the 

concept of Lindenmayer systems: a type of formal 

grammars that is especially wellsuited for the 

modeling of plants and that allows the user to easily 

exploit whatever self-similarity the plant has. 

The following chapters give an account of 

experiments with Lindenmayer systems, as well as 

of efforts to patch them up by adding external 

algorithms to model the aspects of the plant that they 

poorly represent (most notably, leaf venation 

patterns).  

2 LINDENMAYER SYSTEMS 

This section introduces the concept of Lindenmayer 

systems, a variation of formal grammars widely 

applied to plant generation. They were first 

introduced by Aristid Lindenmayer as a means of 

modeling the growth of algae, but were later given a 

more thorough theoretical description and applied to 

many different problems. 
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A deterministic context free Lindenmayer system 

(D0L-system) is a tuple <V,  , P> where 

! V - is a set of symbols. 

!  "V - is the axiom or start symbol. 

! P#V×V* : ($a)(%!p)((a, p)"P) is the set of 

productions. 

Note that the right side of the production may be 

empty (erasable productions are permissible) and 

that Lindenmayer systems do not differentiate 

between terminal or non-terminal symbols. Also 

note that each symbol is the left side of exactly one 

production (hence the determinism). 

The arrow relation & # V+×V* is defined as 

follows: P & Q iff P can be expressed as a sequence 

of symbols P = p1, p2, ..., pn : pi"V and Q can be 

expressed as a sequence of strings Q = q1, q2, ..., qn

" V* such that n > 0 and for each i there exists a 

production from pi to qi, i.e. ($i)(pi, qi) "P. 

The difference between ordinary grammars and 

Lindenmayer systems lies in the fact that we 

substitute all symbols at once. Also note that, given 

a string from V*, the concatenation of the 

transformations of each constituent letter of the 

string is defined unambiguously and is trivial to 

compute. This is in strict opposition to context-free 

grammars, where special care needs to be taken to 

avoid ambiguity. 

In practical applications, we start off with the 

axiom and iterate the & relation a fixed number of 

steps. The number of steps is considered a 

parameter. Normally, this parameter represents the 

”depth” of simulation, for example the level of 

development of the plant being modeled. Below, a 

simple example of a deterministic context-free 

Lindenmayer system is presented. A more elaborate 

example, which can be used to model plants will be 

given later. 

V = {A,B,C} 

  = A 

The set P contains the following productions: 

A & BC 

B & AC 

Note that we have omitted the production from 

C. This is common practice, and means that C & C. 

After three iterations, this system yields: 

  = A & BC & ACC & BCCC 

It has been decided that context-free parametric 

Lindenmayer systems provide enough flexibility to 

model an adequate scope of plants. The plant is 

constructed in that the string resulting from iterating 

a Lindenmayer system a specified number of times 

is scanned for the symbols listed below (all other 

symbols are ignored).

! F(l, r) Draws a stem segment(cylinder) of length 

l and radius r. The cylinder follows the Z 

axis. Its base matches the XY plane. 

! L(l) Draws a leaf. The length of the main axis 

of the leaf equals l. 

! [ Puts current turtle state onto the stack. 

! ] Discards current turtle state and pops the 

new state 

! +(') Rotates the turtle by ' degrees around the 

X axis. 

! &(() Rotates the turtle by ( degrees around the 

Y axis. 

! /()) Rotates the turtle by ) degrees around the 

Z axis. 

The drawing takes place in a turtle-like manner 

in that the drawing turtle has a state at any given 

time. The state comprises location and rotation 

(which is represented as a 4×4 transformation 

matrix). Therefore, turtle state can be viewed as an 

alternative reference frame embedded into the 3d 

scene.

3 PLANT GENERATION 

This chapter addresses the core issues related to 

plant generation. While the whole process revolves 

around Lindenmayer systems, auxiliary mechanisms 

need to be added to make the plants appear realistic. 

In the following subsections, a discussion is given of 

the methods used for the generation of various 

aspects of plants. 

3.1 Leaf Venation 

Modeling leaf venation is quite imperative to 

achieving the proper looks of a modeled plant. This 

is due to the fact that the surface of plant leaves is 

usually bigger and more prominent to the viewer 

than other features of the plant. Therefore due care 

must be exercised to ensure that an adequate 

algorithm is employed.  

Taulor-Hell and Baranoski (2002) provide a 

thorough list of methods used to date, ranging from 

simple texture mapping of scanned leaves to modern 

procedural approaches.  

Couder et al. (2002) describe an interesting 

experiment aimed at establishing new methods of 

reproducing venation patterns. They put special gel 

in moulds of different shapes. The gel was then left 

to dry and cracks that appeared on the surface due to 

the stress caused by the top layer of the gel drying 

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

77



faster and than the lower layer. They concluded that 

the pattern of cracks on the surface of the gel bears 

considerable similarity to venation patters of various 

leaves.

Rodkaew et al. (2002) describe a particle-system 

based approach that is very appealing. It has, 

however, one major disadvantage: it is difficult to 

tweak the used approach to achieve true similarity 

with real leafs. 

Runions et al. (2005) provide a solution that is 

quite successful at addressing the ills of the earlier 

attempts of using particle systems to model vein 

growth. The authors, base their algorithm on the idea 

that venation patterns emerge due to a special plant 

hormone, called auxin: “[...] auxin originates in the 

leaf blade and flows toward existing veins, which 

transport it to the leaf base. During this flow, auxin 

is canalized into narrow paths [...]. These paths 

gradually differentiate into new vein segments. 

Experimental evidence suggests that auxin sources 

may be discrete.” 

To account for this hormone, we use two kinds 

of particles: source particles, representing auxin and 

node particles, representing vein segments. The 

algorithm is an iterative process that tries to 

reproduce the way in which the sources and nodes 

relate to one another on the leaf surface.  

Once the iterative process has completed, we 

have a graph representing the generated venation 

pattern. What we would like to have, however, is the 

texture of the actual veins. To get it, we need to 

account for one vastly important aspect of leaf 

venation: the width of the veins. First, we observe 

that the venation pattern of leaf generated using the 

described algorithm has the topology of a tree. This 

means that the edges (vein segments) may be sorted 

with respect to their distance from the tree root (leaf 

origin). Therefore, it is possible to mark the edges 

which are the furthest from the root (the thinnest 

veins) as having width 1. The width of the remaining 

edges can then be assumed to follow from the 

formula  !"#$%&
% ' ( )*+,-

%

+
. We calculate the widths 

of edges that are farther from the root first and then 

use these values to calculate the nearer ones. The 

process is repeated till we reach the root node.  

3.2 Leaf Texture 

Once the geometry and topology of the leaf venation 

pattern have been generated, there still remains the 

question of how to texture the areas of the plant leaf 

between the veins. Ideally, the color of the leaf 

surface in these areas should be dependent on the 

surrounding vein pattern and on the shape of the 

leaf. However, it turns out that satisfactory results 

may be obtained by using a simple technique of 

making the background entirely independent of the 

venation pattern. 

The following figure compares the actual photo 

of a croton leaf with an artificially generated 

equivalent. As can be seen, considerable 

dissimilarities remain apparent. 

Figure 1: Generated leaf vs. real leaf image (source: own 

photo).

3.3 Triangulation of Leaf Surface and 
Deformation into the 3D 

It is of course imperative to achieving the proper 

looks of the plant that they are wrapped in a natural 

fashion. The best, most general solution, is the one 

employed by Mundermann et al. (2003). They have 

used sticky splines, a modification of spline curves 

that maintains the topology of the modeled structure, 

to construct the leaf skeleton and devised a special 

algorithm that is able to generate such skeletons 

automatically. Naturally, the constructed skeleton 

corresponds directly to the leaf’s venation pattern. 

This allows them to represent arbitrary leaf lobes 

and thus produce high-quality renderings of the 

plants. This approach, however, is both complicated 

and computationally expensive, since each primary 

or secondary leaf vein must be given its 

representation in the form of an appropriate spline. 

Therefore, it is better suited to plant rendering than 

to real-time display. 

In search of a simpler solution, it became 

apparent that as long as we do not need to model leaf 

deformation that is due to the venation pattern, it 

suffices to provide just an arbitrary triangulation of a 

flat leaf shape, which can then be bent into the third 

dimension. It is, however, important that the 

triangulation is accurate enough near the brim of the 

leaf blade, so that jagged edges can be avoided.  

Once we have the mesh, it has to be deformed to 

account for the bending of the leaf. The algorithm 

uses a simple, but relatively effective solution that 

assumes that the deformation of the leaf surface into 

the third dimension is a function of only the y 

coordinate of the flat leaf surface (the one that goes 

along the leaf axis).  
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3.4 Stem Texture 

While there seems to have been considerable 

research into the ways of generating aesthetically 

appealing textures of tree bark, we could not find a 

ready algorithm specifically geared at reproducing 

the outer looks of the stems of non-tree plants. 

Because devising a new algorithm would be 

complex, we have opted to use a simple bark-like 

pattern that is fast and easy to compute while 

delivering results of passable quality.  

We adopted the solution due to Oppenheimer 

(1986) which used a noise pattern run through a 

sawtooth function. The algorithm takes three inputs: 

a noise image, an integer N specifying the number of 

bark ridges and a real R specifying the roughness of 

the bark.  

The result of the described procedure is a 

grayscale image. To obtain color, the image is 

saturated using a gradient specified by two user-

definable colors. 

The following figures demonstrate textures 

generated using various parameters 

Figure 2: Samples of stem textures generated by the 

described algorithm. 

4 SAMPLE PLANTS 

The first system, heavily adapted from 

Prusinkiewicz and Lindenmayer (1996), has been 

used to generate a generic plant. 

axiom     A(100,5,200) 

A(s,t,l)    [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(5*22.5) 

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(7*22.5) 

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] 

F(s,t,l)   S(t,s,l) /(5*22.5) F(s,t,l) 

S(s,t,l)   F(t,s,l)

Figure 3: Plant generated from the system above (3 

iterations). 

The way the system works is centered around the 

A token. This token has three parameters, which 

stand for the following: the length of a single stem 

segment, the width of the stem segment and the 

length of the leaf. In each iteration, the A token 

produces three branches using the [ and ] stack 

operators. They protrude from their base at different 

angles (the / operator). Each branch consists of an 

appropriately rotated (&) stem segment (F), a leaf 

(L) and the token A which allows it to split further 

and form child branches in subsequent iterations. 

Note how the stem width is decreased as the plant 

grows. It is guaranteed to be at least 2 so that the 

stem remains visible.  

Below is presented a second system that 

reproduces a yucca plant 

axiom    A(175,25,250) 

A(s,t,l)     F(s,t) B(7,6,l,60,s,t) 

B(h,v,l,d,s,t)   BN(h,v,v,l,d,s,t) 

BN(h,v,i,l,d,s,t)   LR(h,l,d*v/i) /(13) F(s/10,t) 

BN(h-0.4,v-1,i,l,d,s/2,t) 

LR(n,l,d)    LRN(n,n,l,d) 

LRN(i,n,l,d): i = 0   eps 

LRN(i,n,l,d): i > 0   [+(d)L(l)] /(360/n) LRN(i-1,n,l,d) 

Figure 4: A real yucca photo (source: 

www.pyraflora.co.za) together with models generated with 

100 (centre) and 10 (right) iterations of the system above. 

This model was been inspired by a photo of a 

real yucca plant. First, look at the last three 

productions below: they represent a ”procedure” 

”invoked” by using the LR(n,l,d) token. It draws n 

uniformly distributed leaves of length n and 

inclination d. The two productions from B and BN 

generate a number of such concentric leaf groups 

(once group is added for one iteration). The 

parameters of the leafs are varied to achieve a less 

symmetrical look. In particular the inclination 

change reproduces the dome-like shape of the whole 

plant. After each group of leaves has been drawn, 

the coordinate system is rotated so that the leaves of 

the next group do not protrude from the plant at the 

same angles. Also, a short stem segment is added. 

The token A is used to add the first, long stem 

segment and initiate the generation process. 
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The third system reproduces a fern leaf. It is a 

heavily modified version of a system proposed by 

Prusinkiewicz and Lindenmayer (1996). 

axiom     S 

S    F(2,1) [ +(40) /(90) L(11,1) ] 

  [+(-40) /(90) L(11,1) ] 

  +(9) F(2,1) [ /(90) L(11,4) ] 

F(s,t)   F(s*1.2,t) 

L(l,i): i < 4   L(l*1.2, i+1) 

L(l,i): i = 4   [ / (270) S ] 

Figure 5: A real fern photo (source: Wikipedia) together 

with a generated model (20 iterations). 

The basic idea of this system is based on the 

fractal-like structure of a fern leaf, where smaller 

elements have the same structure as larger elements. 

The basic building block of the fern leaf is 

represented with the production from S: two 

branches (L) protrude from a stem made from to 

segments. The rotation before drawing the leaves is 

necessary so that the surface of the leaves is aligned 

with the surface of the whole leaf. The rotation +(9) 

before the creation of the second stem segment is 

used to make the whole leaf bend. Note how the L 

symbol, whose main purpose is the creation of 

leaves is used to create branches. Its second 

parameter is used in a timer, which converts the leaf 

to the basic building block after a fixed number of 

iterations (this is done using the two last 

productions). This way, the youngest generation of 

created objects is rendered in the form of leaves. The 

disadvantage is that this has absolutely no biological 

motivation, but it looks good enough. The 

production from F is used to elongate the existing 

stem segments so there is enough place for the 

emergence of new ones in the following iteration 

steps.

The next system reproduces a cabbage head.  

axiom    B(4,100,75) 

B(h,l,d)   LR(h,l,d) /(13) B(h-0.3,l,d/2) 

LR(n,l,d)   LRN(n,n,l,d) 

LRN(i,n,l,d): i = 0   eps 

LRN(i,n,l,d): i > 0   [+(d)L(l)] /(360/n)  

LRN(i-1,n,l,d) 

Figure 6: A real cabbage photo (source: 

www.hort.purdue.edu) together with a generated model 

(10 iterations). 

The idea of the system arose when working on 

the yucca plant, and indeed the two systems are 

similar, and the leaf-drawing procedure represented 

by the symbol LR is even identical. This is an 

excellent example of how a seemingly small 

modification to the system yields a completely 

different plant (although other aspects of the plant 

have been modified as well). The key difference is 

in the way the inclination of the leaves in controlled: 

with the yucca plant, the inclination changed linearly 

with respect to the iteration step, here it decreases 

exponentially (the d/2 parameter in the second 

production). This has the effect that the 

concentration of leaves near the plant centre is much 

higher than on the boundary. Also, the leaves near 

the plant centre begin to self-intersect, which of 

course is not realistic as such, but creates a visually 

pleasing filled area near the centre of the plant. 

5 CONCLUDING 

It is quite obvious that the issue central to the whole 

process is the question of how to get the utmost use 

from the formalism of Lindenmayer systems. Sadly, 

it seems adequate to conclude that the promised 

biologically-motivated means of modeling organic 

structures in a fast and easy way has yet to come into 

being. The problem with Lindenmayer systems is 

inherently tied to one of their main virtues: 

simplicity. True, it is possible to express complex 

structures using only a few productions. True, it is 

easy to obtain images of the same plant at different 

developmental stages if the system is appropriately 

constructed. This does not change the fact, however, 

that it is extremely difficult to extend this formalism 

to cover a broad spectrum of objects. Lindenmayer 

systems are good at describing tree structures, which 

is hardly surprising because trees are simple. As 

soon as more complexity is required, they fail. One 

may argue that most plants do have a tree topology 

and thus the added complexity is not required. The 

simplest example of this limitation it the one that has 
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been encountered while researching leaf venation: 

originally, the venation pattern of the leaf was 

intended to be modeled using an auxiliary 

Lindenmayer system. However, it proved impossible 

to construct a system that would model a reasonable 

variety of such systems adequately as it was very 

difficult to make the separate vein lets grow 

together. Consequently, a separate algorithm had to 

be introduced. Plants may be tree like in the macro 

scale, but they are certainly not so in the micro scale, 

nor in the scale of the whole ecosystem. A similar 

argument applies to other plant features. If one 

wants smooth branches, it is necessary to add a 

generalized cylinders to the model, which is external 

to the system. If one wants flowers, another structure 

has to be added. This has the effect that once we add 

everything that is necessary to construct a well-

looking plant, the whole model loses its flexibility 

because these addenda do not have the 

developmental potential that a raw Lindenmayer 

system boasts: we can no longer trace the way a 

plant develops. Indeed, during the development of 

productions, one is fast tempted to fall into the 

pitfall of merely viewing the Lindenmayer system as 

an exotic variation of programming in LOGO and 

thus lose whatever biological founding the model 

might have had. Naturally, this does not mean that 

Lindenmayer systems are out of place. As of now, 

there exists no better solution for generating 

arbitrary plants. 

Another aspect of plant modeling that needs to 

be stressed here is the huge potential of particle 

systems. In the effort described in this paper, they 

have been used to model the leaf venation pattern. 

Their main advantage is the relatively 

straightforward way of implementation, at least 

compared to attempts to tackle the same issues using 

a more prescriptive approach. It is also easy to 

introduce variation in the generated structures, 

because the sources are scattered randomly as well 

as to model two- or even three-dimensional 

structures. Actually, attempts have been made 

(Rodkaew et al.,  2002) to use them for modeling 

whole plants, but initial results were modest at best. 

In this context, it seems appropriate to note the 

analogy between particle and Lindenmayer systems: 

if we allow the particles to have arbitrary parameters 

and the rules that govern the behaviour of a particle 

(which may mean both modifying an attribute of the 

particle or splitting it into smaller particles) to be 

based on an arbitrarily defined neighborhood of the 

particle (which may extend to the whole system), 

then a Lindenmayer system is just a special case of a 

particle system constrained to one dimension and 

one notion of proximity, where tokens correspond to 

particles. It would be interesting to see in what 

practical ways the use of particle systems may be 

beneficial to the modeling of plants. 

In summary, it does not seem very original or 

innovative, but needs to be stated that plants are 

inherently complex. Complex objects require 

complex models, which usually require complex 

implementation. This paper outlined some endeavors 

on the way to a better model. It remains to be seen 

how fast the evolution of computer graphics leads us 

to an algorithm that produces truly satisfying results. 
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