
GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

Kamil Ciosek and Pawel Kotowski
Faculty of Mathematics and Information Science, Warsaw University of Technology

Pl. Politechniki 1, 00-661 Warszawa, Poland

ciosekk@student.mini.pw.edu.pl, p.kotowski@mini.pw.edu.pl

Keywords: Modeling, Lindenmayer system.

Abstract: The main focus of this paper is the analysis of modern methods of algorithmic plant generation. First, a brief

introduction is given to the necessary formalism: Lindenmayer system. It is followed by a description of

each stage of plant generation process. These include algorithms for obtaining: leaf venation graph, leaf

texture, stem texture, and the geometry and topology of the whole plant. In particular, the following

approaches have been used: textures are obtained from transformed noise, a general plant description is

generated with a parametric Lindenmayer system and a purpose-built particle-based algorithm is used to

simulate leaf venation. The last section gives a detailed description of four sample systems used to generate

different plants, outlining the reasons why a given system gives the desired graphical result.

1 INTRODUCTION

It is beyond doubt that plant modeling is one of the

milestones that computer graphics needs to achieve

to finally get to the holy grail of movie-quality real-

time image synthesis for games and other virtual

worlds. Indeed, after programmers mastered the

ways to reproduce simpler elements of our world on

the computer screen, it is now primarily in the

foliage that the struggle goes on to stun the user with

the realism of artificial imagery. While each new

generation of games presents a considerable

improvement over its predecessors, the results are

still not entirely satisfying and usually apply to only

a specific class of plants. Therefore plant generation

truly stands out as an area that is worthwhile to

research into and learn about.

With most objects, realistic display boils down to

hand-crafting a model with a polygon count

sufficient to display the necessary detail. This

approach has quite limited use because no model

designer could possibly reproduce the level of

complexity represented by a plant, if the model is to

be looked at from a close enough distance. Also, it is

impossible to achieve the variety of plants within the

same species, or trace the development of plants

over time with manual modeling. Therefore we need

a descriptive formalism that enables us to compress

the plant structure into a workable formula that can

be hand-modified and intuitively understood. In fact,

it is one of the central concepts of mathematics to

describe some aspect of the structure of a complex

object in a simple fashion. One feature of plants that

seems to be helpful in doing so is the fact that they

display a certain degree of self-similarity. Of course,

this fractal-like behavior does not encompass every

aspect of the plant at every scale, but still, it is quite

helpful. In this respect, this paper describes the

concept of Lindenmayer systems: a type of formal

grammars that is especially wellsuited for the

modeling of plants and that allows the user to easily

exploit whatever self-similarity the plant has.

The following chapters give an account of

experiments with Lindenmayer systems, as well as

of efforts to patch them up by adding external

algorithms to model the aspects of the plant that they

poorly represent (most notably, leaf venation

patterns).

2 LINDENMAYER SYSTEMS

This section introduces the concept of Lindenmayer

systems, a variation of formal grammars widely

applied to plant generation. They were first

introduced by Aristid Lindenmayer as a means of

modeling the growth of algae, but were later given a

more thorough theoretical description and applied to

many different problems.

76

A deterministic context free Lindenmayer system

(D0L-system) is a tuple <V, , P> where

! V - is a set of symbols.

! "V - is the axiom or start symbol.

! P#V×V* : ($a)(%!p)((a, p)"P) is the set of

productions.

Note that the right side of the production may be

empty (erasable productions are permissible) and

that Lindenmayer systems do not differentiate

between terminal or non-terminal symbols. Also

note that each symbol is the left side of exactly one

production (hence the determinism).

The arrow relation & # V+×V* is defined as

follows: P & Q iff P can be expressed as a sequence

of symbols P = p1, p2, ..., pn : pi"V and Q can be

expressed as a sequence of strings Q = q1, q2, ..., qn

" V* such that n > 0 and for each i there exists a

production from pi to qi, i.e. ($i)(pi, qi) "P.

The difference between ordinary grammars and

Lindenmayer systems lies in the fact that we

substitute all symbols at once. Also note that, given

a string from V*, the concatenation of the

transformations of each constituent letter of the

string is defined unambiguously and is trivial to

compute. This is in strict opposition to context-free

grammars, where special care needs to be taken to

avoid ambiguity.

In practical applications, we start off with the

axiom and iterate the & relation a fixed number of

steps. The number of steps is considered a

parameter. Normally, this parameter represents the

”depth” of simulation, for example the level of

development of the plant being modeled. Below, a

simple example of a deterministic context-free

Lindenmayer system is presented. A more elaborate

example, which can be used to model plants will be

given later.

V = {A,B,C}

 = A

The set P contains the following productions:

A & BC

B & AC

Note that we have omitted the production from

C. This is common practice, and means that C & C.

After three iterations, this system yields:

 = A & BC & ACC & BCCC

It has been decided that context-free parametric

Lindenmayer systems provide enough flexibility to

model an adequate scope of plants. The plant is

constructed in that the string resulting from iterating

a Lindenmayer system a specified number of times

is scanned for the symbols listed below (all other

symbols are ignored).

! F(l, r) Draws a stem segment(cylinder) of length

l and radius r. The cylinder follows the Z

axis. Its base matches the XY plane.

! L(l) Draws a leaf. The length of the main axis

of the leaf equals l.

! [Puts current turtle state onto the stack.

!] Discards current turtle state and pops the

new state

! +(') Rotates the turtle by ' degrees around the

X axis.

! &(() Rotates the turtle by (degrees around the

Y axis.

! /()) Rotates the turtle by) degrees around the

Z axis.

The drawing takes place in a turtle-like manner

in that the drawing turtle has a state at any given

time. The state comprises location and rotation

(which is represented as a 4×4 transformation

matrix). Therefore, turtle state can be viewed as an

alternative reference frame embedded into the 3d

scene.

3 PLANT GENERATION

This chapter addresses the core issues related to

plant generation. While the whole process revolves

around Lindenmayer systems, auxiliary mechanisms

need to be added to make the plants appear realistic.

In the following subsections, a discussion is given of

the methods used for the generation of various

aspects of plants.

3.1 Leaf Venation

Modeling leaf venation is quite imperative to

achieving the proper looks of a modeled plant. This

is due to the fact that the surface of plant leaves is

usually bigger and more prominent to the viewer

than other features of the plant. Therefore due care

must be exercised to ensure that an adequate

algorithm is employed.

Taulor-Hell and Baranoski (2002) provide a

thorough list of methods used to date, ranging from

simple texture mapping of scanned leaves to modern

procedural approaches.

Couder et al. (2002) describe an interesting

experiment aimed at establishing new methods of

reproducing venation patterns. They put special gel

in moulds of different shapes. The gel was then left

to dry and cracks that appeared on the surface due to

the stress caused by the top layer of the gel drying

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

77

faster and than the lower layer. They concluded that

the pattern of cracks on the surface of the gel bears

considerable similarity to venation patters of various

leaves.

Rodkaew et al. (2002) describe a particle-system

based approach that is very appealing. It has,

however, one major disadvantage: it is difficult to

tweak the used approach to achieve true similarity

with real leafs.

Runions et al. (2005) provide a solution that is

quite successful at addressing the ills of the earlier

attempts of using particle systems to model vein

growth. The authors, base their algorithm on the idea

that venation patterns emerge due to a special plant

hormone, called auxin: “[...] auxin originates in the

leaf blade and flows toward existing veins, which

transport it to the leaf base. During this flow, auxin

is canalized into narrow paths [...]. These paths

gradually differentiate into new vein segments.

Experimental evidence suggests that auxin sources

may be discrete.”

To account for this hormone, we use two kinds

of particles: source particles, representing auxin and

node particles, representing vein segments. The

algorithm is an iterative process that tries to

reproduce the way in which the sources and nodes

relate to one another on the leaf surface.

Once the iterative process has completed, we

have a graph representing the generated venation

pattern. What we would like to have, however, is the

texture of the actual veins. To get it, we need to

account for one vastly important aspect of leaf

venation: the width of the veins. First, we observe

that the venation pattern of leaf generated using the

described algorithm has the topology of a tree. This

means that the edges (vein segments) may be sorted

with respect to their distance from the tree root (leaf

origin). Therefore, it is possible to mark the edges

which are the furthest from the root (the thinnest

veins) as having width 1. The width of the remaining

edges can then be assumed to follow from the

formula !"#$%&
% ' ()*+,-

%

+
. We calculate the widths

of edges that are farther from the root first and then

use these values to calculate the nearer ones. The

process is repeated till we reach the root node.

3.2 Leaf Texture

Once the geometry and topology of the leaf venation

pattern have been generated, there still remains the

question of how to texture the areas of the plant leaf

between the veins. Ideally, the color of the leaf

surface in these areas should be dependent on the

surrounding vein pattern and on the shape of the

leaf. However, it turns out that satisfactory results

may be obtained by using a simple technique of

making the background entirely independent of the

venation pattern.

The following figure compares the actual photo

of a croton leaf with an artificially generated

equivalent. As can be seen, considerable

dissimilarities remain apparent.

Figure 1: Generated leaf vs. real leaf image (source: own

photo).

3.3 Triangulation of Leaf Surface and
Deformation into the 3D

It is of course imperative to achieving the proper

looks of the plant that they are wrapped in a natural

fashion. The best, most general solution, is the one

employed by Mundermann et al. (2003). They have

used sticky splines, a modification of spline curves

that maintains the topology of the modeled structure,

to construct the leaf skeleton and devised a special

algorithm that is able to generate such skeletons

automatically. Naturally, the constructed skeleton

corresponds directly to the leaf’s venation pattern.

This allows them to represent arbitrary leaf lobes

and thus produce high-quality renderings of the

plants. This approach, however, is both complicated

and computationally expensive, since each primary

or secondary leaf vein must be given its

representation in the form of an appropriate spline.

Therefore, it is better suited to plant rendering than

to real-time display.

In search of a simpler solution, it became

apparent that as long as we do not need to model leaf

deformation that is due to the venation pattern, it

suffices to provide just an arbitrary triangulation of a

flat leaf shape, which can then be bent into the third

dimension. It is, however, important that the

triangulation is accurate enough near the brim of the

leaf blade, so that jagged edges can be avoided.

Once we have the mesh, it has to be deformed to

account for the bending of the leaf. The algorithm

uses a simple, but relatively effective solution that

assumes that the deformation of the leaf surface into

the third dimension is a function of only the y

coordinate of the flat leaf surface (the one that goes

along the leaf axis).

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

78

3.4 Stem Texture

While there seems to have been considerable

research into the ways of generating aesthetically

appealing textures of tree bark, we could not find a

ready algorithm specifically geared at reproducing

the outer looks of the stems of non-tree plants.

Because devising a new algorithm would be

complex, we have opted to use a simple bark-like

pattern that is fast and easy to compute while

delivering results of passable quality.

We adopted the solution due to Oppenheimer

(1986) which used a noise pattern run through a

sawtooth function. The algorithm takes three inputs:

a noise image, an integer N specifying the number of

bark ridges and a real R specifying the roughness of

the bark.

The result of the described procedure is a

grayscale image. To obtain color, the image is

saturated using a gradient specified by two user-

definable colors.

The following figures demonstrate textures

generated using various parameters

Figure 2: Samples of stem textures generated by the

described algorithm.

4 SAMPLE PLANTS

The first system, heavily adapted from

Prusinkiewicz and Lindenmayer (1996), has been

used to generate a generic plant.

axiom A(100,5,200)

A(s,t,l) [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(5*22.5)

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)] /(7*22.5)

 [&(22.5)F(s,t,l)L(l)A(s,t/2 + 2,l)]

F(s,t,l) S(t,s,l) /(5*22.5) F(s,t,l)

S(s,t,l) F(t,s,l)

Figure 3: Plant generated from the system above (3

iterations).

The way the system works is centered around the

A token. This token has three parameters, which

stand for the following: the length of a single stem

segment, the width of the stem segment and the

length of the leaf. In each iteration, the A token

produces three branches using the [and] stack

operators. They protrude from their base at different

angles (the / operator). Each branch consists of an

appropriately rotated (&) stem segment (F), a leaf

(L) and the token A which allows it to split further

and form child branches in subsequent iterations.

Note how the stem width is decreased as the plant

grows. It is guaranteed to be at least 2 so that the

stem remains visible.

Below is presented a second system that

reproduces a yucca plant

axiom A(175,25,250)

A(s,t,l) F(s,t) B(7,6,l,60,s,t)

B(h,v,l,d,s,t) BN(h,v,v,l,d,s,t)

BN(h,v,i,l,d,s,t) LR(h,l,d*v/i) /(13) F(s/10,t)

BN(h-0.4,v-1,i,l,d,s/2,t)

LR(n,l,d) LRN(n,n,l,d)

LRN(i,n,l,d): i = 0 eps

LRN(i,n,l,d): i > 0 [+(d)L(l)] /(360/n) LRN(i-1,n,l,d)

Figure 4: A real yucca photo (source:

www.pyraflora.co.za) together with models generated with

100 (centre) and 10 (right) iterations of the system above.

This model was been inspired by a photo of a

real yucca plant. First, look at the last three

productions below: they represent a ”procedure”

”invoked” by using the LR(n,l,d) token. It draws n

uniformly distributed leaves of length n and

inclination d. The two productions from B and BN

generate a number of such concentric leaf groups

(once group is added for one iteration). The

parameters of the leafs are varied to achieve a less

symmetrical look. In particular the inclination

change reproduces the dome-like shape of the whole

plant. After each group of leaves has been drawn,

the coordinate system is rotated so that the leaves of

the next group do not protrude from the plant at the

same angles. Also, a short stem segment is added.

The token A is used to add the first, long stem

segment and initiate the generation process.

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

79

The third system reproduces a fern leaf. It is a

heavily modified version of a system proposed by

Prusinkiewicz and Lindenmayer (1996).

axiom S

S F(2,1) [+(40) /(90) L(11,1)]

 [+(-40) /(90) L(11,1)]

 +(9) F(2,1) [/(90) L(11,4)]

F(s,t) F(s*1.2,t)

L(l,i): i < 4 L(l*1.2, i+1)

L(l,i): i = 4 [/ (270) S]

Figure 5: A real fern photo (source: Wikipedia) together

with a generated model (20 iterations).

The basic idea of this system is based on the

fractal-like structure of a fern leaf, where smaller

elements have the same structure as larger elements.

The basic building block of the fern leaf is

represented with the production from S: two

branches (L) protrude from a stem made from to

segments. The rotation before drawing the leaves is

necessary so that the surface of the leaves is aligned

with the surface of the whole leaf. The rotation +(9)

before the creation of the second stem segment is

used to make the whole leaf bend. Note how the L

symbol, whose main purpose is the creation of

leaves is used to create branches. Its second

parameter is used in a timer, which converts the leaf

to the basic building block after a fixed number of

iterations (this is done using the two last

productions). This way, the youngest generation of

created objects is rendered in the form of leaves. The

disadvantage is that this has absolutely no biological

motivation, but it looks good enough. The

production from F is used to elongate the existing

stem segments so there is enough place for the

emergence of new ones in the following iteration

steps.

The next system reproduces a cabbage head.

axiom B(4,100,75)

B(h,l,d) LR(h,l,d) /(13) B(h-0.3,l,d/2)

LR(n,l,d) LRN(n,n,l,d)

LRN(i,n,l,d): i = 0 eps

LRN(i,n,l,d): i > 0 [+(d)L(l)] /(360/n)

LRN(i-1,n,l,d)

Figure 6: A real cabbage photo (source:

www.hort.purdue.edu) together with a generated model

(10 iterations).

The idea of the system arose when working on

the yucca plant, and indeed the two systems are

similar, and the leaf-drawing procedure represented

by the symbol LR is even identical. This is an

excellent example of how a seemingly small

modification to the system yields a completely

different plant (although other aspects of the plant

have been modified as well). The key difference is

in the way the inclination of the leaves in controlled:

with the yucca plant, the inclination changed linearly

with respect to the iteration step, here it decreases

exponentially (the d/2 parameter in the second

production). This has the effect that the

concentration of leaves near the plant centre is much

higher than on the boundary. Also, the leaves near

the plant centre begin to self-intersect, which of

course is not realistic as such, but creates a visually

pleasing filled area near the centre of the plant.

5 CONCLUDING

It is quite obvious that the issue central to the whole

process is the question of how to get the utmost use

from the formalism of Lindenmayer systems. Sadly,

it seems adequate to conclude that the promised

biologically-motivated means of modeling organic

structures in a fast and easy way has yet to come into

being. The problem with Lindenmayer systems is

inherently tied to one of their main virtues:

simplicity. True, it is possible to express complex

structures using only a few productions. True, it is

easy to obtain images of the same plant at different

developmental stages if the system is appropriately

constructed. This does not change the fact, however,

that it is extremely difficult to extend this formalism

to cover a broad spectrum of objects. Lindenmayer

systems are good at describing tree structures, which

is hardly surprising because trees are simple. As

soon as more complexity is required, they fail. One

may argue that most plants do have a tree topology

and thus the added complexity is not required. The

simplest example of this limitation it the one that has

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

80

been encountered while researching leaf venation:

originally, the venation pattern of the leaf was

intended to be modeled using an auxiliary

Lindenmayer system. However, it proved impossible

to construct a system that would model a reasonable

variety of such systems adequately as it was very

difficult to make the separate vein lets grow

together. Consequently, a separate algorithm had to

be introduced. Plants may be tree like in the macro

scale, but they are certainly not so in the micro scale,

nor in the scale of the whole ecosystem. A similar

argument applies to other plant features. If one

wants smooth branches, it is necessary to add a

generalized cylinders to the model, which is external

to the system. If one wants flowers, another structure

has to be added. This has the effect that once we add

everything that is necessary to construct a well-

looking plant, the whole model loses its flexibility

because these addenda do not have the

developmental potential that a raw Lindenmayer

system boasts: we can no longer trace the way a

plant develops. Indeed, during the development of

productions, one is fast tempted to fall into the

pitfall of merely viewing the Lindenmayer system as

an exotic variation of programming in LOGO and

thus lose whatever biological founding the model

might have had. Naturally, this does not mean that

Lindenmayer systems are out of place. As of now,

there exists no better solution for generating

arbitrary plants.

Another aspect of plant modeling that needs to

be stressed here is the huge potential of particle

systems. In the effort described in this paper, they

have been used to model the leaf venation pattern.

Their main advantage is the relatively

straightforward way of implementation, at least

compared to attempts to tackle the same issues using

a more prescriptive approach. It is also easy to

introduce variation in the generated structures,

because the sources are scattered randomly as well

as to model two- or even three-dimensional

structures. Actually, attempts have been made

(Rodkaew et al., 2002) to use them for modeling

whole plants, but initial results were modest at best.

In this context, it seems appropriate to note the

analogy between particle and Lindenmayer systems:

if we allow the particles to have arbitrary parameters

and the rules that govern the behaviour of a particle

(which may mean both modifying an attribute of the

particle or splitting it into smaller particles) to be

based on an arbitrarily defined neighborhood of the

particle (which may extend to the whole system),

then a Lindenmayer system is just a special case of a

particle system constrained to one dimension and

one notion of proximity, where tokens correspond to

particles. It would be interesting to see in what

practical ways the use of particle systems may be

beneficial to the modeling of plants.

In summary, it does not seem very original or

innovative, but needs to be stated that plants are

inherently complex. Complex objects require

complex models, which usually require complex

implementation. This paper outlined some endeavors

on the way to a better model. It remains to be seen

how fast the evolution of computer graphics leads us

to an algorithm that produces truly satisfying results.

REFERENCES

Couder, Y., Pauchard, L., Allain, C., Adda-Bedia, M.,

Douady, S., 2002. The leaf venation as formed in a

tensorial field. The European Physical Journal B -

Condensed Matter and Complex Systems, 28(2):135–

138. ISSN 1434-6036.

Mundermann, L., MacMurchy, P., Pivovarov, J.,

Prusinkiewicz, P., 2003. Modeling lobed leaves. cgi,

00:60, ISSN 1530-1052.

Oppenheimer, P.E., 1986. Real time design and animation

of fractal plants and trees. SIGGRAPH Comput.

Graph., 20(4):55–64. ISSN 0097-8930.

Prusinkiewicz, P., Lindenmayer, A., 1996. The

algorithmic beauty of plants. Springer-Verlag New

York, Inc., New York, USA. ISBN 0-387-94676-4.

Rodkaew, Y., Chongstitvatana, P., Siripant, S., Lursinsap,

C., 2002. An algorithm for generating vein images for

realistic modeling of a leaf. In International

Conference on Computational Mathematics and

Modeling. May, Thailand.

Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-

Lagan, A-G., Prusinkiewicz, P., 2005. Modeling and

visualization of leaf venation patterns. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Papers, pages 702–711,

New York, NY, USA.

Taulor-Hell, J., Baranoski, G., 2002. State of the art in the

realistic simulation of plant leaf venation systems.

Technical Report CS-2002-17, University of Waterloo,

Department of Computer Science, Waterloo, Ontario.

GENERATING 3D PLANTS USING LINDENMAYER SYSTEM

81

