
Automatic Music Playlist Generation via Simulation-based
Reinforcement Learning

Federico Tomasi
federicot@spotify.com

Spotify
London, United Kingdom

Joseph Cauteruccio
jcauteruccio@spotify.com

Spotify
Boston, USA

Surya Kanoria
suryak@spotify.com

Spotify
San Francisco, USA

Kamil Ciosek
kamilc@spotify.com

Spotify
London, United Kingdom

Matteo Rinaldi
matteor@spotify.com

Spotify
New York, USA

Zhenwen Dai
zhenwend@spotify.com

Spotify
London, United Kingdom

ABSTRACT
Personalization of playlists is a common feature in music stream-
ing services, but conventional techniques, such as collaborative
filtering, rely on explicit assumptions regarding content quality
to learn how to make recommendations. Such assumptions often
result in misalignment between offline model objectives and online
user satisfaction metrics. In this paper, we present a reinforcement
learning framework that solves for such limitations by directly
optimizing for user satisfaction metrics via the use of a simulated
playlist-generation environment. Using this simulator we develop
and train a modified Deep Q-Network, the action head DQN (AH-
DQN), in a manner that addresses the challenges imposed by the
large state and action space of our RL formulation. The resulting
policy is capable of making recommendations from large and dy-
namic sets of candidate items with the expectation of maximizing
consumption metrics. We analyze and evaluate agents offline via
simulations that use environment models trained on both public
and proprietary streaming datasets. We show how these agents lead
to better user-satisfaction metrics compared to baseline methods
during online A/B tests. Finally, we demonstrate that performance
assessments produced from our simulator are strongly correlated
with observed online metric results.

CCS CONCEPTS
•Computingmethodologies→Reinforcement learning;Mod-
eling methodologies.
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1 INTRODUCTION
Generating personalized playlists programmatically enables a dy-
namic form of music consumption that users expect from major
music streaming platforms. Machine learning (ML) methods [3] are
commonly used to power personalized playlist experiences that
attempt to optimize for both content quality and users’ musical
preferences. Music playlist personalization and generation methods
often rely on methods such as collaborative filtering [13, 20, 30]
or sequence modeling [6, 11]. These methods make strong content
quality assumptions that can lead to various practical limitations.
For example, explicit feedback based collaborative filtering assumes
that a "good" playlist consists of tracks to which a user would assign
a high rating and, as a result, often struggles to consider other im-
portant factors such as acoustic coherence, the context of a listening
session, and the potential presence of optimal item sequences. Con-
versely, in industrial music streaming systems, quality is assessed
through metrics derived from user activity, such as average stream-
ing time or the number of days during which user was active during
a given period. The limitations arising from modeling assumptions
in conventional methods can lead to a mismatch between offline
metrics and user satisfaction metrics. For example, a collaborative
filtering method may return a playlist with the highest predicted
ratings but contains a mixture of adult and kids music, which usu-
ally does not lead to good user satisfaction. This makes developing
a good playlist generation system challenging in practice.

Reinforcement learning (RL) offers an orthogonal approach that
does not require explicit quality assumptions but can instead in-
teract with users to learn a playlist generation model that directly
optimizes for satisfaction. RL agents interact with users to explore
and identify important factors that drive playlist quality as assessed
by consumption metrics and, as such, can overcome the target-to-
metric disconnect of conventional playlist personalization methods.

In order to apply RL to music playlist generation, the genera-
tion problem needs to be formulated as a Markov decision process
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(MDP), in which states encode contextual information summarizing
a user listening session, the action space is the space of all the possi-
ble playlists and the reward is the desired user satisfaction metric. A
major challenge of this formulation is the combinatorially complex
action space. For example, the task of generating a playlist of 30
tracks drawn from a pool of 1000 candidates results in a discrete
action space with about 1089 possibilities, which is significantly
larger than the action spaces of common game-focused RL problems
such as GO and Atari. This means that off-the-shelf RL methods
for discrete actions are not readily applicable to the playlist gener-
ation problem. In related recommender system problems, such as
slate recommendation, slate-MDP [26] and slateQ [10] have been
proposed to tackle this combinatorial action space challenge. In
slate recommendation, a list (or slate) of items is recommended to
a user after which the user picks the single best item from the slate.
Both methods [10, 26] rely on the assumption that a user selects
one or zero items from the slate to decompose the MDP for effi-
cient learning. This critical assumption is violated in our problem
space since we desire users to consume a significant portion of
the presented playlist (slate). The resulting inability to decompose
the MDP makes the correct application of methods proposed by
[10, 26] impossible in our setting.

Contributions. In this paper, we propose a simulation-based RL
approach for music playlist generation. We first propose the use of a
user model. This model is trained using user listening sessions and
is used as part of a simulated environment to estimate the outcome
of user interactions with playlists generated by an RL agent. In
the simulated environment, the agent performs a generation task
by consecutively choosing single tracks to recommend to the user.
In turn, we use the user model to predict how a real user would
respond to that track, and pass the information to the agent prior
to choosing the next track to add to the sequence. The action space
in this simplified setting is the size of track candidate pool. The
iterative selection of single tracks from the candidate pool makes
the agent training tractable.

The crucial component of our simulator design is the user be-
havior model, or user model. This model distills user behavioral
patterns from complex listening data allowing for the creation of a
simplified but realistic simulation environment for agent training.
This enables us to experiment with RL agents in a simulated envi-
ronment and accurately assess their performance prior to online
experiments where real users are exposed to the resulting policies.

Using such a user model, we develop a modified Deep Q-Network
(DQN) agent for music playlist generation. Differently from stan-
dard DQN agent formulation, the agent ingests item (track) features
and returns the associated Q value, thus enabling Q-value estimates
for items unseen during training. This formulation allows us to
train a single DQN to generate playlists from a diverse set of can-
didate pools consisting of hundreds of millions of tracks overall.
The performance of the this agent was evaluated offline using pro-
prietary Spotify systems in addition to a publicly available Spotify
listening sessions dataset.

The developed agent was also evaluated in online A/B tests. With
these A/B test results, we then show that the policy performance
evaluations from our simulated environment strongly correlate
with online user satisfaction metrics, thus validating our approach.

The main contributions of this paper are summarized as follows:
(i) We propose a new RL approach for music playlist generation
based on user simulation, which allows us to decompose the com-
binatorial action space to a sequence of tractable actions. (ii) We
develop a user behavioral model based on a recurrent neural net-
work that learns sequential dynamics of user interactions during
music listening resulting in better accuracy than non-sequential
user models. (iii) We develop a modified DQN agent whose policy,
when trained in a simulated environment for playlist generation,
shows good offline and online performance. (iv) Using online tests
we show that our agent leads to better user-satisfaction metrics
than baseline methods and that performance assessments from our
simulator are strongly correlated with these online metric results.

2 RELATEDWORK
Music recommendation is a topic of increased interest in recent
years [5, 25]. Recommending music on a streaming platform is a
non-trivial challenge. It is especially difficult when compared to
other types of content because implicit music preferences of users
are hard to model in a generalized fashion [14]. Moreover, music
streaming users are more likely to listen to the same songs several
times (in comparison to buying the same items on e-commerce plat-
form or watching the same movies on video streaming platforms
being relative less likely), so the trade-off between exploration
and exploitation (i.e., recommending new tracks or recommending
tracks the users are familiar with) becomes harder to balance. RL
approaches provide theoretically valid and practically proven mech-
anisms to solve such problems and, as such, have been extensively
explored for music recommendation tasks [9, 16, 22–24, 33, 34].
Prior work aims at modeling user preferences as part of the RL
procedure itself, however; there is no generally accepted procedure
used to translate user musical preferences into an actionable re-
ward for agents. Some approaches require that users score each
song in the dataset (e.g., [9]), which would be infeasible in large
scale applications. Others relax this requirement and divide songs
in the catalog into predefined bins before assigning each user to
one or multiple clusters (e.g., [16]), which, conversely, may not be
fine-grained enough to capture the nuances of the user preferences.
Traditional methods that use a static notion of preference are also
limiting as user preferences are inherently contextual, so the same
types of songs may be relevant in particular situations but not in
others (e.g., sleep music while exercising). Current work that at-
tempts to use RL methods for music recommendation also fails to
sufficiently account for the sparsity of user-item signals in lean-
back interaction modalities. Moreover, due to the low-friction item
interaction cost of music to users, it is challenging to use implicit
or explicit signals to derive a generally valid content rating [14].

This work combines an accurate model of the environment (a
critical component of our offline RL formulation) with RL agents
best suited for non-myopic decisions. Our model provides us with
a generalizable mechanism via which we can approximate complex
user behaviors and translate them into a reward function that the
agent can effectively use to learn a satisfactory policy. This, coupled
with our agent design, allows us to generate playlists customized to
different types of users in a manner that maximizes their expected
satisfaction as determined by our metrics.
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Previous RL for music playlist generation methods [9, 16, 22–24]
consider the action space to be a single track, which is similar to the
MDP of our simulated environment. The major difference is that
these methods learn an agent directly from recorded user listening
sessions. This training paradigm implies that a user goes through
the exact list of items chosen by the agent in the presented order.
In reality, a user interaction with a playlist is much more complex,
e.g., a user may listen to the generated playlist with a random
shuffle or manually pick individual songs to listen to. We propose
instead training a user behavior model from recorded user listening
sessions and use it to build a simulated environment. Then, an agent
is trained in the simulated environment. This approach avoids the
issue of MDP assumption violation in the previous methods.

In particular, this work is based on two active branches of re-
search: model-based RL [29] and recommender systems [2, 12]. Our
approach to model-based RL is loosely based on the Dyna architec-
ture [28]. The Dyna architecture uses data gathered from real user
interactions to learn an environment model that is in turn used
to improve the policy. However, unlike [28], we decouple the step
of pre-training the user model from training the agent using that
model. This is done mainly to circumvent engineering constraints
but has the additional benefit of a more parsimonious architecture.
The fact that we use a neural network to learn the user model also
makes our system similar to other methods that use deep learning
to predict dynamics [15, 18, 21, 32, 35].

The recommender systems community has increasingly em-
braced RL [1] as a way of generating ranking policies which are
good quality and less myopic than more traditional solutions such
as collaborative filtering methods and learning-to-rank. Our work is
similar to the pioneering approach by Sunehag et al. [27] in that we
use deep learning to approximate 𝑄-functions, but unlike Sunehag
et al. [27], we do not require the slate-MDP formalism. Our ap-
proach can be thought as evaluator-based, aiming at estimating the
optimal action-value function through the use of a deep Q-network.
While few prior works combine Q-learning and an environment
model into a recommender system (e.g., [1]), the exact specifics of
our application, mainly having a user-generated signal for each
component of the slate coupled with the scale at which our model
was deployed, make our work distinct.

3 PROBLEM FORMULATION
Consider the problem of automatic playlist generation in a music
streaming platform. The catalog is composed of millions of songs
(often called tracks) created by a diversity of artists. Each track
and artist is associated with a variety of features that summarize
nuances useful when recommending or otherwisemodeling content
(traits intrinsic to the songs themselves, such as audio features like
beats-per-minute or key, or aggregate user consumption traits).
In this work, we assume that we have access to such features for
each recommendable track. Further details on how to generate
such features can be found in previous works (e.g., [4]). Here we
consider the automatic playlist generation problem, where users
decide on a general super-set of content they are interested in
(such as a genre, e.g., “indie pop”), and the platform is tasked with
generating a playlist that satisfies users given this initial interest.
Having a catalog of millions of tracks, it is unlikely that such a

Figure 1: Reinforcement learning loop in a simulation-based
environment.

playlist already exists especially for tail content types. Further,
each user experiences music differently, hence automatic playlist
generation is a relevant and practical problem for music streaming
platforms to create the best personalized experience for each user.

In order to design a method to best pick a list of tracks for the
user, we first design a user behavior model that estimates how a user
would respond to these tracks. Using this model we can optimize the
selection of tracks in such a way as to maximize a (simulated) user
satisfaction metric. To model users, we assume that each user has an
implicit prior preference for tracks belonging to certain categories.
For example, one user may usually like rock music, while another
user may prefer hip hop. However, we do not assume that (static)
genre preference is the only factor that influences which tracks a
user wants to listen to. Instead, we consider multiple other factors,
such as contextual preference based on time of day, device type
and so on (for example, music patterns during commute hours may
differ than music patterns before sleep, or during working hours)
[8].

Further, we consider a subset of tracks that are available for
each playlist based on the general preference of the user, which
we refer to as the candidate pool. For example, based on the genre
“indie pop” we utilize a pool of candidates that have been previously
assigned to this genre. Each candidate pool has a dimensionality
much lower that the size of the whole catalog of available tracks in
the platform. Utilizing these components we solve the recommender
problem using a model-based RL framework that we detail in the
next section.

4 METHODOLOGY
Figure 1 illustrates the main training loop in a model-based RL
framework [19]. The environment consists of a world model that
models the user behavior in response to an action 𝑎𝑡 ∈ A at
timestep 𝑡 , which is also referred to as a user behavior model in the
previous text. This model captures the state transitions given the
action selected from the agent and the state information visible to
the agent.

More precisely, the environment models a transition function
T : S ×A → S and a reward function R : S ×A → R. The agent
is tasked with learning a policy that selects actions to perform on
the environment based on the current state of the environment.
The policy is hence represented as a function 𝜋 : S → A, that
maps a states to actions. The first state is sampled from the initial
state distribution 𝑝 (𝑠0) by the environment and observed to the
agent. After the action is selected by the policy, the environment
returns the next state 𝑠𝑡+1 ∼ T (·|𝑠𝑡 , 𝑎𝑡 ).
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We consider a recommendation task, in particular for content
programming in a music streaming domain. In such framework, the
action is the item (i.e., the song) recommended. The environment
consumes the action proposed by the agent and uses the world
model to transition to the new state and returns a specific reward
conditioned on the action (for example, whether the user adds the
song to their favorites or plays the item). The agent is able to see
the new state 𝑠𝑡+1 and reward R(𝑎𝑡 ), using them to adapt the policy
and predict the next action to pass to the environment for the next
iteration. This procedure continues until the world model signals
the termination of a specific sequence of states (episode).

During the training phase the environment makes use of a user
model to return a predicted user response for the action recom-
mended by the agent. The user model takes the action (track) and
its features as inputs and makes a prediction based on the current
state of the environment. Such user models are designed to distill
user behavior from real (past) user interactions with the platform.
Further, the state includes information such as user specific features
and the history of the actions already selected by the agent.

In this setting, the effectiveness of policy that results hinges
on the accuracy of the offline environment. Making real word rec-
ommendations using the agent policy requires the user model to
accurately reflect real-world user preferences. In what follows, we
expand on how we design the world model for this task.

4.1 World Model Design
To accurately learn the policy in an offline setting, the agent needs to
interact with a model that mimics a real recommendation scenarios
as close as possible to the same conditions the agent will encounter
when deployed online. To accomplish this, we design a world model
that includes the information of the candidate pools, the user state
information, as well as the current track features. The world model
(environment) models a transition function using historical data,
and uses this function, once trained, to produce a new state from
the action selected by the agent as well as the reward that results
from the specific action.

The world model is responsible for starting the session (start of
episode), keeping track of list of tracks recommended to the user,
for terminating the session (end of episode). The combination of
all of such components is how the world model simulates a user
session. Further, in order to model the reward, the world model
utilizes a user model to predict the user response to an item. The
user model is designed to be as accurate as possible in its ability to
predict how users would have behaved in response to the actions
selected by the agent, by distilling user preference. Such user model
is a supervised classifier trained using data collected from real users
during past online experiments. We use a randomized policy to
collect ground truth interaction data for training. Specifically, we
randomly shuffle the songs in a number of music listening sessions
and collect outcome information for each track streamed by the
user, such as the percentage of the track completed by the user
(if streamed) and the presentation position of the track within the
listening session.

To these data we join user information (i.e., features related to
user interest and past interaction with the platform), which we call
context features, and content information (i.e., information related

to the content that the user is interacting with), which we call
item features. The model uses these features to predict a set of user
responses for each track. In practice, we perform this task by training
a classifier with multiple outputs, each one mapped to a response.
The model is optimized to predict three different (related) user
responses: (i) whether the user will complete the candidate track,
(ii) whether the user will skip the candidate track, (iii) and whether
the user will listen to the track for more than a specific number of
seconds (specified a priori). The actual implementation of the user
model changes the complexity and the modeling power to mimic
real users. While different parameterizations of the user model
are possible, we design two different user models, a sequential
and non-sequential model, which we refer to as SWM and CWM,
respectively.

The sequential model is a sequence of LSTM cells1 that capture
the order of tracks within the same episode and use the user re-
sponse at track 𝑡 − 1 to predict the user response at track 𝑡 . More
specifically, the sequential user model defines a (auto-regressive)
sequential model of the form:

𝑝 (𝒚 (0,...,𝑇 ) ) =
∏
𝑡

𝑝 (𝑦𝑡 |𝑦0, . . . , 𝑦𝑡−1, 𝑖0, . . . , 𝑖𝑡 , 𝑢), (1)

where 𝑖𝑡 represents the item features of the track at the 𝑡-th position,
𝑦𝑡 represents the user response that corresponds to track 𝑖𝑡 and 𝑢
represents the context information (user information in addition to
other information about the current session). The parameterization
of 𝑝 (𝑦𝑡 ) uses a LSTM to capture the sequential information from 0
to 𝑡 − 1. Empirically, we consider a sequential 3-layer model with
(500, 200, 200) LSTM units.

For the non-sequential user model, we construct a series of dense
layers where the information in the input (features) is limited to
features that summarize the track and the user with no other infor-
mation on the session itself (such as position of the track within
the session, or user responses of previous tracks in the session)
provided to the model. The non-sequential user model takes the
following form:

𝑝 (𝒚 (0,...,𝑇 ) ) =
∏
𝑡

𝑝 (𝑦𝑡 |𝑖𝑡 , 𝑢), (2)

where response 𝑦𝑡 to track 𝑖𝑡 does not depend on previous tracks,
and the probability decomposes into independent components.

Each model has its own advantages. The non-sequential model is
simple and fast which makes it easier to use for agent training. The
sequential model is more accurate in the classification task due to
its access to sequential information coupled with the fact that user
responses to tracks in sequence are often correlated. Empirically, we
found that the use of a sequential model (with intrinsically higher
stochasticity) makes training the agent far more difficult and thus
can be less beneficial in practice. Additionally, the non-sequential
model allows us to easily compute the maximum theoretical reward
since it is not dependent on the actual order of songs shown to
the users. For this reason, during offline evaluation we are able
to understand how far the agent is from the maximum expected
reward.

1Different parametrizations can be applied to capture the sequential information, such
as transformers [31]. However, detailed comparisons about different world model
implementations are outside of the scope of the paper.
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At each action picked by the agent, then, the worldmodel collects
the information about the specific track (track features) as well as
context information (user response history, features of previous
tracks in the session and so on) to pass to the user model and
compute the predicted user response. The user response is then
translated into the reward that is passed to the agent.

We also note that the user models can be used directly for item
selection thus effectively bypassing the requirement of learning a
policy using the RL agent. Direct predictions from world models
such as the CWM serve as a strong baseline for our agent policies.
To use these user models for inference we use a planning policy that
turns user-track scores into a sequence of tracks. This is done using
a greedy ranking algorithm, the application of which to a model is
typically referred to as greedy model predictive control (GMPC).
When combinedwith the non-sequential user model CWM,we refer
to such planning policy as CWM-GMPC in our experiments. Note
that the optimal policy when using the CWM for agent training
is equivalent to CWM-GMPC, since item order does not affect
predictions. As such, our expectation is that online, agents trained
using CWM in simulation should be statistically indistinguishable
from the CWM-GMPC baseline.

4.2 Action Head DQN Agent
A highly diverse set of musical interests across users and user
groups coupled with the potential for varied and sometimes even
orthogonal listening behavior or objectives (e.g., consuming famil-
iar or unfamiliar content) on the part of individual users requires a
recommender system that can both generalize and adapt. RL meth-
ods meet these requirements and we propose a simple and efficient
RL solution based on Deep Q- Learning (DQN) [17].

The DQN agent uses a deep neural network to predict the recom-
mendation quality (Q) of each item (action) in a listening session.
The main idea behind the Q network is that each available track is
assigned to a specific value (a Q value), and the track with the high-
est value is then selected by the agent. The reward as returned by
the environment after each action is used to update the Q network.

An intrinsic limitation in our use case is that the pool of can-
didate tracks is dynamic and may depend on contextual or user
information. In particular, the agent needs to be able to generalize
its selection strategy across different candidate pools. This require-
ment results in our DQN differing from typical formulations where
the Q network, given a state representation as input, produces an
array of quality predictions where each array element maps to a
specific action. This is not applicable in our case since the item
space as defined by the pool is constantly changing, and there-
fore, so is the output space of the Q network and its mapping to
specific actions. Simultaneously, we need to train a single agent
that can operate across a diverse set of candidate pools that in
practice can have little to no overlap. Empirically choosing to train
a single agent makes more efficient use of our training data and
generated episodes. Practically, it also means that in production we
need to maintain only one agent and not one agent per pool, user,
or pool-user combination.

Because of such constraints we developed what we refer to as an
action head (AH) DQN agent (Figure 2). Our AH-DQN’s Q network
takes as input the current state and the list of feasible actions.

…

…Observation 
features

Action 
features

…

Figure 2: Action-head network. Both observation and action
features are taken in input in order to estimate the Q value.

The network will produce a single Q value for each action, and
the one with the highest Q value is selected as the next action
to apply. This ensures that a single Q network can be optimized
independently from the set of available items to recommend during
an episode. We model the different environments as a contextual
MDP [7], to ensure generalization across users and candidate pools
thus allowing for the existence of one single agent. Intuitively, this
approach generalizes well to arbitrary and even dynamic candidate
pools. The downside is that we need tomake a forward pass through
the Q network for each allowed action in the candidate pool to
predict its Q value. However, as the candidate pool is much smaller
than the catalog of items to recommend, this is still efficient to do
in practice. Furthermore, this step could be efficiently parallelized
as the forward passes through the Q network, for each action at a
step, are independent from each other.

Our goal is to optimize the following policy: 𝜋AH : S×A𝐿 → A,
which takes as input the state and the list of available actions,
denoted A𝐿 , and selects the best action according to the computed
Q values:

𝜋AH (𝑠𝑡 ) = argmax
𝑎

𝑄 (𝑠𝑡 , 𝑎) .

The Q network makes use of the Bellman optimality equation to
estimate the quality of an action at time 𝑡 , 𝑎𝑡 as follows:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 max
𝑎

𝑄 (𝑠𝑡+1, 𝑎) (3)

where 𝑠𝑡 is the current state, 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is the reward estimate, and
𝑠𝑡+1 is the next state.

The state of a user 𝑠𝑡 ∈ S encodes all the information available to
the agent at time 𝑡 .S is the set of possible states. The state variable 𝑠𝑡
obeys the Markov property 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 𝑝 (𝑠𝑡+1 |𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 ),
since 𝑠𝑡 encodes all the information in (𝑠1, 𝑎1, . . . , 𝑠𝑡−1, 𝑎𝑡−1).

Reward and User Simulator. Our reward function R : A → R
associates the recommended track at step 𝑡 with a measure on how
successful the recommended track (or sequence of tracks up to
and including time-𝑡 ) is with respect to some user outcome. In our
experiments, we measure the performance of the recommender
system based on the probability of a track to be completed by the
user, so R(𝑎𝑡 ) ∈ [0, 1]. In our model-based RL framework, the
user behavior is approximated using a user model (as described in
above) and, in this setting, the probability of completion estimated



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Federico Tomasi et al.

by the model serves as a proxy for the real user preference. Then,
for each episode we compute the sum of completion probabilities
as predicted by the user model until episode termination, which is
the total reward for the episode. The agent updates the Q network
at each iteration to maximize this reward.

5 EXPERIMENTS
We tested our model on both public and proprietary streaming
datasets. We evaluate public streaming performance in an offline
setting only. For our online experiments, we train a user model on
proprietary streaming data of similar structure to the public dataset,
train the agent as described, and deploy a fixed agent policy in an
online A/B testing setting.

5.1 Public Streaming Dataset
We first use a public music dataset from Spotify [4] including 160
million music listening sessions to empirically evaluate our pro-
posed model-based RL formulation. Features that describe tracks
(such as acoustic properties and popularity estimates) and sessions
are provided in the dataset. We organize our data by ordering ses-
sion interactions over time. At each interaction there are indicators
in the dataset that note if the track was completed or skipped at
or before three track-time markers: 𝑟1, 𝑟2, 𝑟3. Using these data we
design simulation environment to train and test our agent. First we
train a response model that takes as input a sequence of tracks up
to time 𝑡 − 1, {𝑎𝑖 , 𝑖 = 0, . . . , 𝑡 − 1} and an action-track at 𝑎𝑡 . It then
predicts the probability of a skip outcomes 𝑟1, 𝑟2, 𝑟3 for 𝑎𝑡 .

We regard each listening session as a list of tracks from a unique
playlist that the agent aims at creating. As described in Section 3, a
user (associated to its listening session) will initiate a play session
by selecting a musical sub-context (such as a genre). Each sub-
context has a pool of associated items (tracks) from which we draw
candidates to generate a playlist. The user will then interact with
the playlist until the selected tracks are exhausted (one source of
episode termination)2.

We impose some design specifics for our simulation. First, we
sample sessions of length 20 from the data. At the first step the
environment observation is composed of the first 5 tracks in the
play session in the order observed. At each step the agent action
is to pick one track from the remaining 15: the response model
then provides a predicted outcome for this selection (probability of
completion). The agent is rewarded for picking tracks with a low
likelihood of being skipped as determined by the response model
and the episode is terminated after 15 steps. As such the maximum
achievable reward in our simulations is the maximum of the sum of
completion probabilities for each session, which is upper-bounded
by the size of candidates in the playlist, i.e., 15.

We use a non-sequential user model (CWM), to simulate user
responses during agent training. As no user features are available
in the public dataset (users are anonymized for privacy), we utilize
only on the track features and past user responses in the session
to compose our feature space. Specifically, the user model utilizes
first 5 tracks in the play session, represented by their features, as a

2Note that, in online scenarios, the user may quit the session prior to consuming all
candidates in the playlist. For simplicity we use a fixed size termination criterion during
offline experiments and evaluation, but other termination criteria remain possible.

Table 1: Average return for random and agent policy on of-
fline evaluation of the public streaming dataset.

Policy Avg. Return 𝜎 CI (95%)

Action Head Policy 1.94 1.27 (0.32 | 4.18)
CWM-GMPC 2.46 1.10 (0.83 | 4.36)
Random 0.98 0.76 (0.0 | 2.54)

Figure 3: Reward distributions for the compared policies on
the public streaming dataset as estimated by the SWM.

context feature to estimate the outcome of the remaining 15 tracks,
each represented by their respective features.

We then train the agent as introduced in Section 4.2 against the
CWM. As mentioned in Section 4.2 this allows for more tractable
and faster training than more complex user models. We train the
Q-network using an element-wise mean squared error TD loss.
Such loss is implemented using an additional target network with
the same structure of the original Q network and its own param-
eters and layers, which is updated with a period of 50 that em-
pirically stabilizes the training. We compare our method to two
baselines: (i) Random: a model to randomly sort the tracks by shuf-
fling the 15 remaining tracks in the session with equal probability;
and (ii) CWM-GMPC: a combination of the non-sequential user
model and a greedy ranking policy, as described in Section 4.2 Fi-
nally, we use an independent metric model to estimate the policy
performance of the agent against the random and CWM-GMPC
baselines. To better simulate user behavior during offline evalua-
tion, we use the sequential world model (SWM) as introduced in
Section 4.2.

Table 1 includes the result summary of our comparisons between
our agent and the two baselines using SWM as the evaluation pro-
cedure. Note that each policy results in relatively modest simulated
average returns (between 1 and 2.5). This is because of two reasons.
First, the dataset does not contain any user preference features and
any non-sequential model has access to only track features during
inference. Second, the action space is made up of only 15 prede-
fined tracks and the goal is to sort them accurately. Our trained
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policies are non-sequential, their ability to achieve highly accu-
rate results on such a task will be somewhat limited. We note that
even the CWM’s greedy optimal ordering produces better predicted
completion counts form the SWM than a random policy. This is
clearly demonstrated by the fact that the CWM-GMPC has the high-
est average return among the three methods tested. CWM-GMPC
orders tracks optimally according to the simulated responses of
CWM. Since the agent is trained against the CWM in simulation
this provides a bound on the performance of the agent.

This bound manifests in the agent. The policy is able to out-
perform a random shuffle, implying that the agent policy is has
captured some information while training in simulation with the
CWM that enables it to provide a better track ordering than random.

We also plot the distribution of rewards in Figure 3. The distribu-
tions show how a random policy mostly fails to return a satisfactory
list of tracks, further validating the assumption that the order of
tracks is indeed meaningful for a good listening experience. The
policy learned by our proposed agent is able to provide a better
experience than the random policy for the majority of the users,
concentrating the majority of (simulated) rewards between 2 and 4
(which correspond on average to at most 7 and 9 tracks completed
in the session of length 20). We can notice a spike in position 0 of
simulated rewards for the agent policy which is not shared from
the CWM-GMPC. This highlights that, for a few users and sessions,
the agent fails to predict an appropriate sequence which leads to
the simulation outcome of all tracks being skipped.

5.2 Online Experiments
We tested our model-based RL approach online at scale to assess the
ability of the agent to power our real-world recommender systems.
Our expectation is that the RL agent, trained offline against a non-
sequential world model, should be able to produce satisfactory
user-listening experiences assuming the world model accurately
reflects user preferences. As the behavior of the agent is directly
dependent on the accuracy of the user model, we also tested our
agent online against the user model by itself (CWM-GMPC).

Experiment Settings. Similar to the experimental settings on the
public dataset, we consider the case of a recommender system
tasked with generating the best list of tracks for a user to listen to
given a particular context (time of day, type of music requested, and
so on). Our recommender system has a similar objective in online
experiments: to maximize user satisfaction. As a proxy for user
satisfaction, we consider the completion count (and rate), i.e., the
amount of tracks recommended by the policy that are completed by
the user (and as a fraction on how many are started). For this task
we first train an agent offline using a non-sequential world model,
CWM, and then deploy the agent online to serve recommendations
to the users. In our production setting each user targeted by the
test selects a playlist which is backed by a predefined track pool,
and the system responds with an sub-selected ordered list of tracks
of a size less than that of the pool.

The outcomes of our user model are primarily consumption-
focused and summarize the probability of user-item interactions.
Specifically, the CWM variant in this case has been optimized for

three targets: completion, skip and listening duration3. The reward
for the agent is computed as the sum of the probability of completion
for each track in an episode.We compare our proposed agent against
three alternative policies:

(i) Random: a model to randomly sort the tracks with uniform
distribution (i.e., all tracks have equal probability of appear-
ing in a specific position);

(ii) Cosine Similarity: a model which sorts the tracks based on
the cosine similarity between predefined user and track em-
beddings;

(iii) CWM-GMPC: the user model ranking, which sorts the tracks
based on the predicted probability of completion from the
user. This is the same GMPC construction we use in the
public dataset but the user-model targets have changed to
match our real-world setting (as described above).

All policies take as inputs features of the user that made the
request and the pool-provided set of tracks with their associated
features. The goal of each policy is to select and order a list of
tracks from the pool that maximizes expected user satisfaction,
which we measure by counting the number of tracks completed
by the user. Note that the number of tracks that the user actually
interacts with (i.e., that the user starts listening to) may be lower
than the recommended number (e.g., if the user leaves the listening
session early). For this reason, in what follows we measure not only
the number of completed tracks, but also the rate of completion
(the amount of tracks completed with respect to those that were
actually started).

To study the effectiveness of our proposed approach we con-
ducted a live A/B test on our production platform. We compared
the previously described 4 policies to the default playlist gener-
ation model of our production platform by running a week long
test. Users were randomly divided into five test cells, assigning
the default model to control group, and assigning the four policies
to their respective treatment groups. We collected a large sample
of interaction data covering 2 million users, interacting with 2.8
million unique tracks across 4 million distinct sessions.

Offline-online correlation. First, we empirically assess the validity
of our approach to simplify the action space of the agent through
a world model which distills user behavior. Figure 5 includes both
offline performance estimates for each model alongside online re-
sults for the policies previously listed. Just like with the public
dataset evaluation, we use an independent metric model in offline
simulation to estimate policy performance, the sequential world
model (SWM) described in Section 5.1.

For each policywe generate a list of recommended tracks for each
evaluation episode. For each list we then compute the completion
probabilities using the SWM and sum them. Finally, we average
the total completion probabilities across the evaluation episodes to
calculate the average reward for a policy.

Our simulator for real-world applications allows for a variety of
settings including (but not limited to) the ability to simulate policy
performance for different users and content. Different simulation
settings and varying simulated episodes initializations can lead to
difficult to summarize, multi-modal performance estimates from our
3To have a binary target, we discretize this value if the listening duration is longer
than a predefined threshold 𝜏 .
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Figure 4: Reward distribution on simulated offline episodes
as estimated by the SWM.

Figure 5: Simulated performance (estimated by the SWM)
with respect to online reward (with true user responses) for
the compared four different policies.

simulator. For these results simply calculating the average reward
of a policy across all episodes can fail to correctly summarize its
performance because of skew, outliers, and the multi-modal distri-
butions. Figure 4 highlights the bimodal distribution of the rewards
for simulated episodes that can result from two common in user
listening behaviors: lean-back (majority of tracks are completed)
and active skipping (majority of tracks are skipped, or incomplete).
The offline performance metric is then computed using a normal-
ized average of the modal returns from episode reward as follows.
A Gaussian mixture model is used to separate the reward distri-
butions, then values are logged and min-max scaled to [0, 1] prior
to each policy being assessed. A non-parametric bootstrap is used
to obtain confidence intervals on our performance estimates for
each policy. Such a procedure yields a more accurate reflection of a
policy’s simulated performance.

The offline performance expectations of the evaluated policies
align with their online performance (Figure 5). Unsurprisingly, a
random policy fails to perform well in both simulated and online
settings. The Cosine Similarity model has better performance than

Table 2: Relative percent difference between world model
(CWM) policy and control on online evaluation.

Metric (Per-Session Average): Relative % Difference:

Completion-Count -2.9 (p: 0.88, CI: -39.38 | 33.59)
Total MSP -8.59 (p: 0.64, CI: -44.55 | 27.36)

MSP-Per-Item -13.97 (p: 0.05, CI: -27.89 | -0.06)
Skip-Rate -5.49 (p: 0.42, CI: -18.77 | 7.79)

Completion-Rate 9.98 (p: 0.23, CI: -6.52 | 26.49)
Session Length (interactions) 13.05 (p: 0.31, CI: -12.02 | 38.11)

Table 3: Relative percent difference between agent policy and
control on online evaluation.

Metric (Per-Session Average): Relative % Difference:

Completion-Count 10.17 (p: 0.59, CI: -26.79 | 47.13)
Total MSP 6.43 (p: 0.73, CI: -30.67 | 43.53)

MSP-Per-Item -5.62 (p: 0.46, CI: -20.69 | 9.44)
Skip-Rate -7.8 (p: 0.33, CI: -23.52 | 7.92)

Completion-Rate 5.39 (p: 0.6, CI: -14.8 | 25.58)
Session Length (interactions) 8.87 (p: 0.53, CI: -19.02 | 36.75)

random, but it lacks the rich user and item features available to
the other non-random policies. We see that the offline performance
between the Action Head Policy (the agent) and CWM-GMPC is
essentially the same. This is to some extent expected since the
optimal policy for agent trained against the pointwise world model
is, in fact, the greedy policy CWM-GMPC (Section 4.2). Online
results show a slight gap between these policies, but the difference
is statistically indistinguishable.

Online Evaluation. Tables 2 and 3 include results on the CWM-
GMPC and RL agent performance online, respectively. Online ex-
periments that directly serve the user model (CWM-GMPC) demon-
strate its performance is statistically indistinguishable from control
for essentially all metrics of interest (Table 2). Note that of the met-
ric comparisons in Table 2, most importantly, the probability of a
user skipping or completing a track is statistically indistinguishable
between the user model and control. This, along with the offline-
online correlation analysis in Figure 5, shows how our approach to
model user behavior is accurate in practice.

The performance of our trained agent and the additional compar-
ative policies relative to control for completion count per session is
shown in Figure 6 and completion rate per session in Figure 7. Our
expectation is that an agent trained against our world-model in an
offline setting should at least mimic its online performance. Our
results show that, online, our user model is statistically indistin-
guishable from control, so we expect to have similar results for our
agent performance. Hence, the objective of our online analysis is to
demonstrate no statistically significant difference between control
(playlist generator implemented in production) and the behavior
of our agent. This is validated in our results, where both our user
model ranking and the agent trained in simulation show results
statistically indistinguishable from control, further validating our
approach.
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Figure 6: Percent difference in average completion count per-
session relative to control.

Figure 7: Percent difference in average completion rate per-
session relative to control.

We also report the complete metric spread for the agent rela-
tive to control in Table 3. Note that although point estimates are
different, the confidence intervals for the metric relative differ-
ence to control for the agent and user model ranking are more
or less entirely overlapping for each metric. This highlights how
the performance of CWM-GMPC and agent are statistically indis-
tinguishable on real users, validating our approach to automatic
playlist generation.

Offline Analysis to Predict Online Results. One of the main goals
of this work is to develop the ability to experiment with, train,
and evaluate agent policies without exposing users to sub-optimal
recommendations. We have seen how the agent trained against a
pointwise user model (which we refer to as AH-CWM) is able to
mimic its optimal policy online. However, the question of perfor-
mance for the agent trained against more complex, sequential user
models (SWM) with unknown optimal policies still remains. Train-
ing such agents brings additional complexity, as a sophisticated
user model is required to be developed alongside an agent that can
train against it effectively. In real scenarios, the implementation
and online testing of a new policy is not straightforward, and needs
to be backed up by some degree of assurance that it will not lead to
a detrimental experience for the user to minimize the risk of users
abandoning the platform.

Figure 8: Online reward with respect to simulated perfor-
mance with the addition of SWM online estimate.

For this reason, we consider our offline-online correlation anal-
ysis of Figure 5 by adding the estimated offline performance as-
sessment of an agent trained against the SWM (AH-SWM). Fig-
ure 8 shows the offline performance of AH-SWM policy along with
an estimate of its online performance derived via extrapolation.
Such offline-online correlation analysis is fundamental in order
to approximate what is the expected improvement that could be
translated online. Based on these predictions we hypothesize an
online improvement over both CWM-GMPC and AH-CWM policy
performance. We argue this type of analysis of being relevant in
practical applications of recommender system where online de-
ployment requires sufficient expected improvement over existing
baselines.

6 CONCLUSION
In this paper we presented a reinforcement learning framework
based on a simulated environment that we deployed in practice
to efficiently use RL for playlist generation in a music streaming
domain. We presented our use case which is different from standard
slate recommendation task where usually the target is to select at
maximum one item in the sequence. Here, instead, we assume
to have a user-generated response for multiple items in the slate,
making slate recommendation systems not directly applicable.

By making use of a learned world model that simulates user
responses to the actions selected by the agent, we were able to train
agents offline and evaluate their policies prior to exposure to real
users. Online results show that even without further training using
online interactions the learned policy does not result in loss of user
satisfaction with respect to other baselines.

A further research direction is to improve the user behavior
model for better agent training. The performance of the trained
agent is influenced by the prediction accuracy of the user behavior
model. We can explore various ways to improve the user behav-
ior model such as designing better user representations, exploring
different neural network architectures such as transformers or in-
creasing the robustness of prediction via techniques like dropout
or ensemble methods.
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