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Abstract

Policy gradient methods have been widely applied in rein-
forcement learning. For reasons of safety and cost, learning
is often conducted using a simulator. However, learning in
simulation does not traditionally utilise the opportunity to im-
prove learning by adjusting certain environment variables –
state features that are randomly determined by the environ-
ment in a physical setting but controllable in a simulator. Ex-
ploiting environment variables is crucial in domains contain-
ing significant rare events (SREs), e.g., unusual wind condi-
tions that can crash a helicopter, which are rarely observed
under random sampling but have a considerable impact on
expected return. We propose off environment reinforcement
learning (OFFER), which addresses such cases by simultane-
ously optimising the policy and a proposal distribution over
environment variables. We prove that OFFER converges to a
locally optimal policy and show experimentally that it learns
better and faster than a policy gradient baseline.

Introduction
When applying reinforcement learning (RL) to physical sys-
tems, a major issue is the cost and risk of running trials, e.g.,
when learning a control policy for a robot. Hence, learning
is often performed using a simulator, to which off-line RL
(i.e., sample-based planning) can be applied. Although this
is cheaper and safer than physical trials, the computational
cost of each trial can still be considerable. It is therefore im-
portant to develop algorithms that minimise this cost. Policy
gradient methods (Sutton et al. 2000) are popular in such
settings as they cope well with continuous action spaces,
which often occur in physical systems such as robots.

However, existing policy gradient methods do not ex-
ploit an important opportunity presented by simulators: the
chance to adjust certain environment variables, i.e., state fea-
tures that cannot be controlled in a physical setting but are
(stochastically) determined by the environment. For exam-
ple, if we learn to fly a helicopter under varying wind condi-
tions (Koppejan and Whiteson 2011), we cannot control the
wind in physical trials but can easily do so in simulation.

A conventional application of policy gradient methods to
such settings is not robust to significant rare events (SREs),
i.e., it fails any time there are rare events that substantially
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affect expected performance. For example, some rare wind
conditions may increase the risk of crashing the helicopter.
Since crashes are so catastrophic, avoiding them is key to
maximising expected performance, even though the wind
conditions contributing to the crash occur only rarely. In
such cases, the conventional approach does not see such rare
events often enough to learn an appropriate response.

In this paper, we propose a new policy gradient method
called off-environment reinforcement learning (OFFER) that
aims to address this deficiency. The main idea is to couple
the primary optimisation of the policy with the secondary
optimisation of a proposal distribution governing the envi-
ronment variables. Since environment variables can be con-
trolled in simulation, we are free to sample from the proposal
distribution when generating data for the primary optimisa-
tion. Thanks to importance sampling, the primary optimisa-
tion can retain unbiased gradient estimates. Just as off-policy
RL learns about a target policy while using a behaviour pol-
icy, off-environment RL learns about a target environment
(the true distribution over environment variables) while gen-
erating data from another environment (the proposal distri-
bution). By learning a proposal distribution that minimises
the variance in the gradient estimate used during primary
optimisation, OFFER can automatically discover and focus
on the SREs that any robust policy must address.

We show that OFFER is guaranteed to converge to a lo-
cally optimal policy. In addition, we present empirical re-
sults on several tasks showing that it greatly outperforms
existing policy gradient methods in the presence of signif-
icant rare events.

Related Work
Our approach is related to existing work on adaptive impor-
tance sampling (Ahamed, Borkar, and Juneja 2006; Frank,
Mannor, and Precup 2008; Desai and Glynn 2001), which
also seeks to optimise proposal distributions. However, most
work focuses on Markov reward processes, i.e., the evalua-
tion of a fixed policy. By contrast, our work considers how
to learn a good proposal distribution for a policy that is itself
changing.

As in our work, Frank, Mannor, and Precup (2008) con-
sider a full Markov decision process and aim to learn using
a proposal distribution that takes rare events into account.
However, they assume prior knowledge of what the signif-



icant rare events are as well as access to a simulator with
environment variables that directly control the probability
of such rare events. By contrast, our work seeks to automati-
cally discover significant rare events and the proposal distri-
butions that generate them. For example, we may know that
a helicopter becomes unstable in a tornado but not know a
priori (1) whether such an event is important for distinguish-
ing between policies, (2) how to make our simulator gener-
ate a tornado if it is significant, or (3) what a good proposal
distribution for learning is. Our approach is designed to work
without such prior knowledge.

Paul et al. (2016) consider a similar setting to ours but
in the context of Bayesian optimisation, in which case envi-
ronment variables must be marginalised out using Bayesian
quadrature. Here, we consider a policy gradient approach,
which is typically more effective in high-dimensional tasks.

Variance reduction in policy gradient methods has also
been well studied. Most work focuses on subtracting an ap-
propriate baseline (Peters and Schaal 2006; Williams 1992).
Some work also considers importance sampling for variance
reduction (Glynn 1990; Nakayama, Goyal, and Glynn 1994)
but uses only hard-coded proposal distributions, whereas our
approach learns them automatically.

Our work is also related to safe reinforcement learning
(Garcı́a and Fernández 2015), which also aims to identify
risky states. Many such methods aim to optimise a risk-
averse objective (Bertsekas and Rhodes 1971; Heger 1994;
Malfaz and Salichs 2011), whereas we aim to more effi-
ciently optimise a risk-neutral objective (expected return).
Other methods aim to constrain exploration to avoid risky
states (Gehring and Precup 2013), whereas we learn in a safe
simulator and thus seek proposal distributions that visit such
states more often, if they are significant to expected return.

Background
We begin by formalising the problem setting and reviewing
existing methods.

Problem Setting
We model the decision-making task as a Markov decision
process (MDP), in which taking an action at ∈ A in
state st ∈ S at time t generates a reward whose expected
value is r(st, at) and a transition to a next state st+1 ∼
p(st+1|st, at). We assume access to an MDP simulator in
the form of a trajectory model that generates sequences of
samples:

τ = (s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . , sN , aN , rN ),

where s1 is sampled from the distribution over initial states
p1(s1) and each action at is sampled from a stochastic pol-
icy πθ(at|φ(st)) parameterised by a vector θ; φ(st) is a
function mapping st to a vector of real-valued features. In
the sequel, we write πθ(at|st) for brevity. We assume πθ is
a twice differentiable function of θ. T is the set of all pos-
sible trajectories, i.e., T = {τ : ∃θ. pπθ (τ) > 0}, where
pπθ (τ) = p1(s1)

∏N
t=1 p(st+1|st, at)πθ(at|st).

In addition, we assume access to a vector of environment
variables ψ (e.g., coefficients of friction, wind velocities)

that affect state transition probabilities. Note that, while we
can control ψ when running the simulator, the policy we ul-
timately deploy cannot.

In this paper, we model environment variables by suppos-
ing that states in the simulator are sampled, not from p1(s1)

and p(st+1|st, at), but from proposal distributions fψ1 (s1)
and fψ(st+1|s1, at), which are parameterised by ψ. We can
set ψ such that p1 = fψ1 and p = fψ and thus sample trajec-
tories from the original MDP, or we can set it otherwise and
thus sample trajectories from altered transition dynamics.

The goal in this setting is find a θ that maximises the total
expected return:

Jθ =

∫
S

ρπ(s)

∫
A

πθ(a|s)r(s, a)dads,

where the improper distribution ρπ(s′) =∫
S

∑∞
n=1 γ

n−1p1(s)p(s→ s′, n, π)ds and:

p(s→ s′, n, π) =∑
τ∈Traj(n,s,s′)

n∏
t=1

∫
p(st+1|st, at)π(at|st)dat,

where Traj(n, s, s′) is the set of all possible trajectories of
length n beginning with s and ending with s′.

In the next section, we propose an algorithm that learns
both θ and ψ in parallel.

Existing methods
Policy gradient (PG) methods (Sutton et al. 2000; Silver et
al. 2014; Degris, Pilarski, and Sutton 2012; Deisenroth et al.
2013) use gradient ascent to directly optimise θ. PG meth-
ods are appealing in many settings because they cope well
continuous action spaces.

Sutton et al. (2000) showed that the gradient of Jθ with
respect to θ can be written as:

∇θJθ = Es∼ρπ, a∼πφ

∇θ log πθ(a|s) (Qπ(s, a)− b(s))︸ ︷︷ ︸
u(s,a)

 ,
(1)

where b(s) a baseline function. Given a trajectory τ sampled
from p1(s1) and p(st+1|st, at), we can estimate the gradient
as:

∇̂θJθ(τ) =

N∑
t=1

γt∇θ log πθ(at|st)ût(st, at), (2)

where ût(st, at) is an estimate of ut(st, at). Setting
ût(st, at) =

∑
i≥t γ

i−tri − b, where b is a baseline (Pe-
ters and Schaal 2006), yields the REINFORCE method
(Williams 1992) summarised in Algorithm 1.

Setting ût(st, at) = ri+γφ(si+1)>w−φ(si)
>w, i.e., the

TD-error computed using TD(λ) policy evaluation (Sutton
1988), yields an actor-critic method (Degris, Pilarski, and
Sutton 2012) summarised in Algorithm 2.

Algorithm 2 provides an unbiased estimator forQ(s, a)−
V (s) (Bhatnagar et al. 2009, Lemma 3), where V is the



Algorithm 1 CRITIC-REINFORCE(τ )

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: bi ← compute baselines
3: for i = 1 . . . N do
4: û(si, ai)← (

∑N
t=i γ

t−irt)− bi
5: end for
6: return û

Algorithm 2 CRITIC-AC(τ )

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: . TD(λ) learning algorithm
3: û(s1, a1)← r1 + γφ(s1)>w
4: for i = 2 . . . N do
5: δi ← ri + γφ(si)

>w − γφ(si−1)>w
6: û(si, ai)← δi
7: e← γλe+ φ(si−1)
8: w ← βδie
9: end for

10: return û

value function of the current policy, thus estimating u(s, a)
with b(s) = V (s).

Convergence of PG using Algorithm 2 is guaranteed if
the critic’s representation is compatible with the policy rep-
resentation (Sutton et al. 2000).

Off-Environment Reinforcement Learning
In this section, we propose off-environment reinforcement
learning (OFFER) for coping with significant rare events
by exploiting environment variables. The main idea is to in-
terleave two different optimisation steps. The primary opti-
misation step performs an importance-weighted policy gra-
dient update, adjusting θ to improve the policy’s expected
return. The secondary optimisation performs a gradient de-
scent step on the proposal distribution, adjusting ψ to reduce
the variance of the gradient estimate used during primary
optimisation. For example, in the helicopter domain, OF-
FER can optimise the control policy while simultaneously
optimising the wind conditions used to evaluate that policy.
Algorithm 3 summarises OFFER; the rest of this section pro-
vides the details of primary and secondary optimisation.

Algorithm 3 OFFER()

1: while not converged do
2: τ ← sample trajectory using πθ and fΨ

3: . τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
4: ∆θ ← PRIMARY-OPTIMISATION(τ , θ, ψ)
5: θ ← θ + ∆θ
6: ∆ψ ← SECONDARY-OPTIMISATION(τ , ψ)
7: ψ ← ψ + ∆ψ
8: end while

Primary Optimisation
The primary optimisation performs a policy gradient update
that adjusts θ to improve expected return. We first derive the

gradient and then discuss an appropriate update rule.
To properly estimate the gradient, we must modify (2) to

take into account the fact that trajectories are sampled from
f rather than p. To do so, we simply apply importance sam-
pling to the policy gradient update (Glynn 1990):

∇θJθ = Eτ∼pπ(τ)

[
N∑
t=1

γt∇θ log πθ(at|st)Qπ(st, at)

]
(3)

= Eτ∼fπ(τ)

[
pπ(τ)

fπ(τ)

N∑
t=1

γt∇θ log πθ(at|st)Qπ(st, at)

]
,

where fπ(τ) = f1(s1)
∏N
t=1 f(st+1|st, at)π(at|st). Given

a concrete sampled trajectory τ , we can then estimate the
gradient as,

∇̂θJθ =
p1(s1)

f1(s1)

N∏
t=1

p(st+1|st, at)
f(st+1|st, at)

(4)

N∑
t=1

γt∇θ log πθ(at|st)Qπ(st, at).

We now consider how to use (4) to update θ. A naive ap-
proach would be to use the standard policy gradient update
∆θ = α∇̂θJθ. However, doing so is problematic in any set-
ting characterised by significant rare events.

To see why, first note that the magnitude of the update
depends on the magnitude of the gradient, which in turn de-
pends on the magnitude of the rewards. Now consider two
MDPs that are identical save that in one MDP, the rewards
have been multiplied by a large constant. Clearly, for a given
θ, the magnitude of ∆θ should be the same in both MDPs.
However, since ∇̂θJθ will be different, the two MDPs will
require different values of the learning rate α.

We now show that, in the presence of SREs, the same
problem can arise within a single MDP. We need the fol-
lowing definitions.
Definition 1. A partition P = {E1, E2, . . . , E|P |} divides
the set of possible trajectories T into events, Ei.

For example, a simple partition P = {ENE, ERE} involves
just normal and rare events.
Definition 2. A policy feature θi is salient with respect to an
event E under partition P if ∃τ ∈ E. {∇̂θJθ(τ)}i 6= 0.

Note that different policy features can be salient for differ-
ent subsets of events, e.g., θi might be salient only for ERE
while θj might be salient for both ERE and ENE . Now sup-
pose that different events have different reward scales, e.g.,
trajectories in ERE trigger rewards of a larger order of mag-
nitude than those in ENE . Then, different policy features
will need different learning rates, just as in the example with
two MDPs. Consequently, the ability to adaptively set the
learning rate separately for each policy feature becomes an
essential, not merely desirable, characteristic of the learning
algorithm in our setting.

To meet this requirement, we employ a stochastic vari-
ant of Newton’s method (Furmston and Barber 2012; Spall
2000). In our setting, the Hessian H equals ∇θ∇>θ Jθ. This
can be estimated from a sampled trajectory, yielding Ĥ(τ).



Furthermore, we can maintain a mean of the Hessians esti-
mated over time: ĤM (τ ′1, . . . , τ

′
N ) =

∑N
i=1

1
N Ĥ(τ ′i). The

gradient update is then:

∆θ = α diag(ĤM (τ1, . . . , τn+1))−1 ̂∇θJθ(τn+1).

To avoid the prohibitive cost of inverting the full Hessian,
only its diagonal is used, which corresponds to performing
Newton’s method on each coordinate separately. As a result,
the computational complexity is the same as that of vanilla
gradient descent.

Algorithm 4 summarises the resulting primary optimisa-
tion algorithm, which calls either Algorithm 1 or 2 as a sub-
routine. The diagonal variant of Newton’s method that Al-
gorithm 4 implements can be seen as an automatic way of
setting learning rates for vanilla gradient descent (Furmston
and Barber 2012). Consequently, it addresses the problem
described above: the estimate of the i-th entry of the vec-
tor ∇̂θJθ and the i-th diagonal entry of ĤM both scale with
û (the output of Algorithms 1 and 2), which scales with the
rewards. Hence, if some policy features are salient for differ-
ent subsets of events, then the effects on the update cancel
in line 11 of Algorithm 4.

Algorithm 4 PRIMARY-OPTIMISATION(τ , θ,ψ)

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: . Critic
3: û← CRITIC-REINFORCE(τ ) or CRITIC-AC(τ )
4:
5: . Actor
6: w ← p1(s1)

f1(s1)

∏N
t=1

p(st+1|st,at)
f(st+1|st,at) . Importance sampling

7: ∇̂θJθ ← w
∑N
i=1 γ

i∇θ log πθ(ai|si)ûi
8: Ĥ ← w

∑N
i=1 γ

idiag(∇θ∇>θ log πθ(ai|si))ûi
9: ĤM ← i−1

i ĤM + 1
i Ĥ

10:
11: return αiĤ−1

M ∇̂θJθ

We use Newton’s method because it has already been
shown to work well with policy gradient methods (Furm-
ston and Barber 2012). However, other adaptive learning rate
approaches such as ADAM (Kingma and Ba 2014) could
also be considered. Nevertheless, as we discuss below, using
ADAM would complicate the secondary optimisation.

Secondary Optimisation
The goal of secondary optimisation is to find a proposal dis-
tribution that best facilitates primary optimisation. To this
end, we propose to minimise the variance of the gradient es-
timate followed during primary optimisation. Such variance
is known to be a key contributor to slow learning in policy
gradient methods (Peters and Schaal 2006; Williams 1992;
Glynn 1990; Nakayama, Goyal, and Glynn 1994). By min-
imising this variance, we expect OFFER to discover pro-
posal distributions that generate significant rare events more
often than in the original task. Since such events contribute
substantially to expected return, doing so makes it easier to
estimate the gradient of the expected return.

We start by defining the covariance:

C = Covτ∼fψ

 1

fψ(τ)
p(τ)

N∑
t=1

γt∇θ log πθ(at|st)ut︸ ︷︷ ︸
h(τ)


= Covτ∼fψ

[
1

fψ(τ)
h(τ)

]
= Eτ∼fψ

[(
h(τ)

fψ(τ)

)(
h(τ)

fψ(τ)

)>]
− (5)

(
Eτ∼fψ

[
h(τ)

fψ(τ)

])(
Eτ∼fψ

[
h(τ)

fψ(τ)

])>
.

Since we are interested in minimising our uncertainty about
each of the partial derivatives that make up the gradient,
rather than the correlations between them, we consider only
the diagonal of C. Furthermore, since we have no a priori
reason to think one partial derivative is more important than
another, we define the trace of C as our objective:

min
ψ

trace(C) . (6)

Note that, if we treat ĤM as a constant (which is approxi-
mately true for largeN ), then ∆θ, as computed by Newton’s
method, is a linear function of ∇̂θJθ. Hence, minimising the
covariance of ∇̂θJθ also minimises the covariance of ∆θ.
By contrast, in ADAM, ∆θ is a nonlinear function of ∇̂θJθ
that divides by the square root of the second moment. Hence,
using ADAM for primary optimisation would necessitate a
more complex secondary objective.

To solve (6) by gradient descent, we must evaluate the
gradient of the trace with respect to φ. The gradient with
respect to the second term in (5) is zero because,

∇ψ Eτ∼fψ(τ)

[
h(τ)

fψ(τ)

]
= 0.

Hence, we focus on the gradient of the trace of the first term:

∇ψj trace

(
Eτ∼fψ

[(
h(τ)

fψ(τ)

)(
h(τ)

fψ(τ)

)>])

=
∑
i

∇ψj
∫ (

hi(τ)

fψ(τ)

)2

fψ(τ)dτ

=
∑
i

∇ψj
∫
hi(τ)2

fψ(τ)
dτ

=
∑
i

∫ (
∇ψj

1

fψ(τ)

)
hi(τ)2dτ

= −
∑
i

∫
1

fψ(τ)2

(
∇ψjf(τ)

)
hi(τ)2dτ

= −
∑
i

∫
1

fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)2fψ(τ)dτ

= Eτ∼fψ

[
−
∑
i

1

fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)2

]
.



Consequently:

∇ψj trace(C) = Eτ∼fψ

[
−
∑
i

1

fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)2

]
,

which can be estimated from a trajectory τ as follows:

∇̂ψj trace(C) =
∑
i

− 1

fψ(τ)3

(
∇ψjf(τ)

)
ĥi(τ)2, (7)

where ĥi(τ) = p(τ)
∑N
t=1 γ

t∇θ log πθ(at|st)ût.
Unlike the primary optimsation, the secondary optimisa-

tion can be performed using any variant of stochastic gradi-
ent descent. Since our estimate of the gradient (7) relies on
only one trajectory, we employ ADAM, which smooths esti-
mates across previous trajectories. Algorithm 5 summarises
the secondary optimisation.

Algorithm 5 SECONDARY-OPTIMISATION(τ , ψ)

1: . Traj. τ = (s1, a1, r1, s2, a2, r2, . . . , sN , aN , rN )
2: . ADAM algorithm
3: ∇̂ψj trace(C)← 1

m

∑
τ∈S

∑
i−

1
fψ(τ)3

(
∇ψjf(τ)

)
hi(τ)

2

4: m← β1m+ (1− β1)∇̂ψj trace(C)
5: . � is an element-wise product
6: v ← β2v + (1− β2)∇̂ψj trace(C)� ∇̂ψj trace(C)

7: m̂← m/(1− βi1)
8: v̂ ← v/(1− βi2)
9:

10: . Division and square root are element-wise
11: return α′m̂/

√
v̂ + ε

Convergence Guarantee
In this section, we show that OFFER has convergence guar-
antees similar to those of existing policy gradient methods
(Peters and Schaal 2008). In particular, we use existing re-
sults to establish a corollary showing that θ converges to a
local optimum of J .

Corollary 1. If the following assumptions hold:

1. f is non-zero everywhere;
2. J is convex over some restricted domainB containing the

local optimum θ?;
3. All iterates θ(1), . . . belong to B;
4. Robbins-Monro conditions (Spall 2000, Condition C.1’)

hold for the learning rate αi;
5. At each iteration k, there exist δ, ρ > 0 such that

E
[
‖∇̂θJθ

(k)
‖2+δ

]
≤ ρ;

6. J has a uniformly bounded third derivative in B;

7. At each iteration, Ĥ(k)
M is diagonal with positive entries1;

1Existing techniques (Spall 2000) can be used to show consis-
tency for non-diagonal Hessians as well. In this work, we opt for
the diagonal Hessian for efficiency reasons.

8. At each iteration k, there exist δ, ρ > 0 such that
E
[
‖(Ĥ(k)

M )−1‖2+δ
]
≤ ρ;

9. If we are using a critic, then it is compatible (Sut-
ton et al. 2000) with the policy, i.e., ∇θu(s, a) =
(∇θπ(s, a)) 1

π(s,a) ,

then OFFER (Algorithm 3) converges almost surely to the
local minimum θ?. Moreover, ψ converges to a local mini-
mum of the optimisation problem in (6).

Proof. First we show E
[
∇̂θJθ

]
= ∇θJθ. For the

REINFORCE-based critic, this follows from the derivation
of (3), i.e., importance sampling does not introduce bias
(Owen 2013, Chapter 9). For the actor-critic, the same rea-
soning together with Assumption 9 implies that the gradient
involving the approximate critic is the same in expectation
as the true gradient (Sutton et al. 2000, Theorem 2). Since
this condition holds at each iteration, even though ψ and the
distribution the expectation is taken with respect to changes,
we satisfy condition C.0′ from (Spall 2000), which requires
that we use a sequence of unbiased estimators.

Moreover, Assumption 7 implies that, at each iter-
ation k, for each coordinate i, sgn({∇θJθ(θk)}i) =

sgn({Ĥ−1
M ∇θJθ(θk)}i). Furthermore, Assumption 2 im-

plies that the iterates are, of necessity, bounded. Together,
these facts imply the lemma “Sufficient Conditions for C.5
and C.7” from (Spall 2000), which shows that certain condi-
tions relating to the Hessian estimate are satisfied.

Given this lemma, we can instantiate the main theorem
(Spall 2000, Theorem 1b-2SG), which says that a general
second-order stochastic optimisation scheme, of which the
primary optimisation of Algorithm 4 is a special case, con-
verges given a set of conditions that we have either just
shown or which follow directly from our assumptions.

The secondary optimisation converges because eventual
convergence of θ renders the secondary optimisation prob-
lem stationary, at which point ADAM’s convergence guar-
antee applies (Kingma and Ba 2014, Theorem 4.1).

Note that Corollary 1 holds for any choice of fψ , not just
the ones learned by OFFER: a poor choice of ψ will only
slow convergence, not prevent it.

Experiments
In this section, we empirically compare OFFER to a policy
gradient baseline (primary optimisation only) on variants of
the mountain car task, as well as a simulated robot arm. We
describe the experimental setup only briefly; complete de-
tails are in the supplementary material. Both domains have
penalties rather than rewards, so lower is better on all plots.
All results are averaged over 48 runs.

Mountain Car
We modified the mountain car benchmark task by adding a
third state feature (besides position and velocity): a boolean
variable indicating whether a rare event occurs in the given
episode. With probability 0.01, this boolean is true, in which



case the landscape is shifted to the right, changing when the
agent should go forwards or backwards, and penalties are
multiplied by 1000. In our setup, θ consists of the parameters
of a standard tile-coding function approximator, and ψ is a
single scalar that determines the probability of a rare event.

We first consider an unaliased setting (Figure 1a), in
which the agent has separate features for normal and rare
events, i.e., the tile coding is duplicated, with each feature
activated only for normal or rare events, not both. Hence,
the agent can in principle learn effective policies for both
events, but must learn a proposal distribution that allocates
data appropriately to them.

The lines in the middle of the plot show the average per-
formance of OFFER (blue) compared to the policy gradi-
ent baseline (black). OFFER substantially improves perfor-
mance (note the log scale on the y-axis). In fact, the base-
line shows negligible learning, confirming that optimising
the proposal distribution can be key to successful learning
when significant rare events are present. Note that, unlike in
previous work (Frank, Mannor, and Precup 2008), OFFER
discovered a good proposal distribution on its own.

The lines at the top and bottom of Figure 1a show the
performance of the same learning runs split out into just
rare events and just normal events, respectively, i.e., the
middle lines are weighted averages of the top and bottom
lines. These lines show that the baseline algorithm is actu-
ally learning, but its progress is limited to the normal events
that dominate its data but contribute only negligibly to ex-
pected return. By contrast, OFFER learns a proposal distri-
bution that samples rare events with a probability of approx-
imately 0.8, enabling it to efficiently learn how to handle
such events. It learns more slowly on the normal events but
has correctly concluded that doing so is worth the tradeoff.

Next, we consider an aliased setting (Figure 1b) in which
the actor uses the same features in θ for both normal and
rare events, i.e., it cannot directly observe a rare event or
condition its behaviour on it. Unlike in the unaliased setting,
it cannot learn separate policies for the two events but must
learn a single policy that balances between the two, with the
correct balance depending critically on both the probability
and relative scale of penalties for rare events. Here, OFFER
again performs much better. It learns a proposal distribution
assigning a probability of about 0.9 to rare events, enabling
it to more quickly learn to cope with such events. Further-
more, though initially slower, it quickly catches up to the
baseline even on the normal events. Because the two events
are somewhat similar, knowledge gained in the rare events
transfers to the normal events via the shared features.

Finally, we consider a variant of mountain car (Figure 1c)
with a more complex representation of ψ, which is now a
vector of four features, yielding a bigger challenge for sec-
ondary optimisation. Two features control the probability of
trigger events, with the rare event occurring only if both are
triggered. The other two features control the probability of
slippery and jittery conditions, which affect the task but not
as dramatically as a rare event. The results show that OFFER
again outperforms the baseline, and can thus effectively op-
timise the proposal distribution even when doing so requires
setting multiple features correctly. The learned proposal dis-

0 30000 60000
101

102

103

104

105

106

107

rare event

combined

normal event

(a) Unaliased Mountain Car

0 60000 120000
Number of steps

101

102

103

104

105

106

107

rare event

combined

normal event

(b) Aliased Mountain Car

0 60000 120000
Number of steps

0

3

6 1e4

(c) 4-Featured Mountain Car

0 15000 30000
Number of steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1e5

(d) Robotic Arm

Figure 1: Average per-episode penalty on the orig. MDP
(lower is better) for OFFER (blue) and baseline PG (black).

tribution gives high values to the trigger events to maximise
the probability of rare events, while the probabilities of slip-
pery and jittery conditions vary per run.

Robotic Arm
We also applied OFFER to a simulated robotic-arm control
task (Figure 1d) that was recently proposed specifically to
model significant rare events (Paul et al. 2016). An off-the-
shelf kinematics simulator (Cully et al. 2015) models an arm
with three joints, each of which can be set by the agent,
whose goal is to get the end effector to a specific location.
The task is episodic and in each step the agent moves each
joint by at most 30% of the allowed movement range. The
penalty the agent receives is proportional to the distance of
the end effector to the target location. Moreover, there is a
wall near the arm and the agent incurs a large penalty if
the arm hits it. Usually, the arm is far from the wall (nor-
mal event) but occasionally it is near to it (rare event). OF-
FER learns a safe policy that avoids the wall even when it is
nearby, whereas the baseline is unable to solve the task.

Conclusions & Future Work
We proposed off-environment reinforcement learning (OF-
FER), which speeds convergence of policy gradient meth-
ods by optimising the proposal distribution from which envi-
ronment variables are set. We prove that OFFER converges
to a locally optimal policy. Furthermore, empirical results
in multiple tasks show that OFFER learns better and faster
than a policy gradient baseline in settings that are charac-
terised by significant rare events. In future, we plan to apply
OFFER to deterministic policy gradient methods (Silver et
al. 2014) as well as to the generalised helicopter hovering
task (Koppejan and Whiteson 2011), which is known to be
characterised by significant rare events.
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