
Value Iteration with Options and State Aggregation

Kamil Ciosek David Silver
Centre for Computational Statistics and Machine Learning

University College London

Abstract

This paper presents a way of solving Markov Decision
Processes that combines state abstraction and temporal
abstraction. Specifically, we combine state aggregation
with the options framework and demonstrate that they
work well together and indeed it is only after one com-
bines the two that the full benefit of each is realized. We
introduce a hierarchical value iteration algorithm where
we first coarsely solve subgoals and then use these
approximate solutions to exactly solve the MDP. This
algorithm solved several problems faster than vanilla
value iteration.

Introduction
Finding solutions to discrete discounted Markov Decision
Processes (MDPs) is an important problem in Reinforce-
ment Learning. The basic problem is to obtain the optimal
policy of the MDP so that the overall discounted reward
obtained as we follow this policy within the MDP is maxi-
mized.1 In this work, we do not work with the optimal policy
directly but compute the optimal value function instead.

The approach we take in this paper is to modify the well-
known value iteration (VI) algorithm (Bellman 1957). The
basic idea of VI is to keep iterating the Bellman optimal-
ity equation. This is well-known to converge to the optimal
value function. Our framework is conceptually based on a
natural extension of the Bellman optimality equation where
matrix models take the place of vector value functions.

In order to solve large problems, table-lookup algorithms
are not practical because of the sheer number of states,
which VI must loop over. Hence the need for state abstrac-
tion. For this work, we chose aggregation (Bertsekas 2012),
which can be nicely integrated into our framework of the
modified Bellman optimality equation. Algorithms based on
single-step models of primitive actions are impractical, be-
cause long solution paths require many iterations of VI.
Hence the need for temporal abstraction.2 We solve this

1Our framework works for the discount factor γ < 1 as well
as for those cases with γ = 1 where standard value termination
converges (for example if there is a ‘sink’ state).

2Note that there is some evidence (Ribas-Fernandes et al. 2011)
that subgoal-based hierarchical RL is similar to the processes actu-
ally taking place in the human brain.

problem via the use of options (Sutton, Precup, and Singh
1999; Precup, Sutton, and Singh 1998) — we construct op-
tion models which can be used interchangeably with the
models we have for primitive actions.

To our knowledge, this is the first paper where an al-
gorithm using options and value iteration efficiently solves
medium-sized MDPs (our 8-puzzle domain has 181441
states). Unlike prior work (Silver and Ciosek 2012), we
demonstrate a modest improvement in runtime performance
as well as a significant reduction in the number of iterations.
Also, we have the first convergent VI-style algorithm where
options (temporal abstraction) are combined with a frame-
work for state abstraction, yielding far better results than the
use of either idea alone. Furthermore, our algorithm is based
on a principled extension of the Bellman equation. We em-
phasise that our algorithm converges to the optimal value
function — although we find approximate solutions to the
subgoals, these solutions are then used as inputs to solve the
original MDP exactly, regardless of the choice of subgoals.

Background and Prior Work
State Aggregation
Consider3 (Bertsekas 2012) an MDP with |A| actions; for
an action a the probability transition matrix is Pa, defined
by Pa(i, j) = γPr(it+1 = j|it = i, at = a) and the
vector of expected rewards for each state is Ra, where the
element corresponding to state i is defined by Ra(i) =
E [rt|it = i, at = a]. There arem aggregate states. We intro-
duce the aggregation (Bertsekas 2012) matrix Φ and the dis-
aggregation (Bertsekas 2012) matrixD of dimensions n×m
and m×n respectively. Under the state aggregation approx-
imation (Bertsekas 2012), solving the original MDP may be
replaced by solving a much smaller aggregate MDP, by com-
puting P̃a = DPaΦ and R̃a = DRa. The solution can then
be computed by any known algorithm. VI is convergent be-
cause the matrices P̃a and R̃a define a valid MDP. This gives
us a value function in terms of the aggregate states.

Options and Matrix Models
An option (Sutton 1995; Sutton, Precup, and Singh 1999;
Precup, Sutton, and Singh 1998) is a tuple 〈µ, β〉, consist-

3We refer the reader to the more elaborate introductory section
in the appendix

ing of a policy µ, mapping states to actions, as well as a
binary termination condition β, where β(i) tells us whether
the option terminates in state i. We will now discuss models
(Sutton, Precup, and Singh 1999; Sutton 1995) for options
and for primitive actions. A model consists of a transition
matrix P and a vector of expected rewards R. For a primi-
tive action a, we defined Pa and Ra in section . For options
they have an analogous meaning. R(i) is the expected total
discounted reward given the option was executed from state
i, R(i) = E[

∑τ
t=0 γ

trt|i0 = i] where τ is the (random)
duration of the option and i0 is the starting state. The ele-
ment P (i, i′), is the probability of the option terminating in
state i′, given we started in state i, considering the discount-
ing: P (i, i′) =

∑∞
τ=1 γ

τPr(τ, iτ = i′|i0 = i). Denote by
i0 the starting state of trajectory and by iτ the final state. It
is convenient (Sutton 1995) to arrange P and R in a block

matrix of size (n + 1) × (n + 1), in this way:
[

1 0
R P

]
.

Now model composition corresponds to matrix multiplica-
tion, i.e. if M (1) and M (2) are block matrices, M (1)M (2) is
also a block matrix corresponding to first executing the op-
tion defined in M (1) and then the one defined in M (2). In
this paper, we assume that the action set A = {A1, . . . , Al}
is already given in this matrix format. We introduce a simi-
lar format for value functions. The value function V is rep-
resented as a vector of length n+ 1 with 1 in the first index
and the values for each state in the subsequent indices. MV
is a new value function, corresponding to first executing the
option defined in M and then evaluating the states with V .
Element i+ 1 of the vector V to state i, as does row i+ 1 of
the action model. We use MATLAB notation, i.e. V (i + 1)
is element i+ 1 of vector V and M(i+ 1, :) is row i+ 1 of
the matrix M .

Other Ways of Using Hierarchies to Improve
Learning
We give a brief survey of known approaches to hierarchical
learning. We stress that our approach is novel for two rea-
sons: we compose macro-operators at run-time and we have
no fixed hierarchy. This has not been done to date, except
in the work on options and VI (Silver and Ciosek 2012),
which introduced generalizations of the Bellman equation,
versions of which we use. But it did not include state abstrac-
tion, slowing the resulting algorithm — it only produced a
decrease in the iteration count required to solve the MDP,
while we provide better solution time. Other approaches
include using macro-operators to gain speed in planning
(Korf 1985), but for deterministic systems only. Prior work
on HEXQ (Hengst 2002) is largely orthogonal to ours – it
focuses on hierarchy discovery, while we describe an al-
gorithm given the subgoals. The work on portable options
(Konidaris and Barto 2007) only discusses a flat, fixed (un-
like this work) options hierarchy. MAXQ (Dietterich 1998)
also involves a pre-defined controller hierarchy (the MAXQ
graph)4. Combining the use of temporal and state abstrac-
tion was tried before, but differently from this work. The

4One can learn a MAXQ hierarchy (Wang, Li, and Zhou 2012),
but only in a way when it is first learned and then applied.

abstraction-via-statistical-testing approach (Jong and Stone
2005) only works for transfer learning — options are only
constructed after the original MDP has been solved. The U-
tree approach (Jonsson and Barto 2001) does not guarantee
convergence to V ? for all MDPs. The modified LISP ap-
proach (Andre and Russell 2002) uses a fixed option hierar-
chy and the policy obtained is only optimal given the hierar-
chy, i.e. it may not be the optimal policy of the MDP without
the hierarchy constraint.

Table-lookup Value Iteration
We begin by describing the table-lookup algorithm for com-
puting the value function of the MDP. It is similar to the one
described in previous work (Silver and Ciosek 2012), but
not the same — here, termination is implemented in a dif-
ferent, more intuitive, way. We start with plain VI and then
proceed to more complicated variants. In MATLAB notation
(see section), VI can be described as follows for state i.

V(k+1)(i+ 1)← max
a

Aa(i+ 1, :)V(k) (1)

Here, a selects an action (control). We rewrite this update to
construct a model corresponding to the optimal value func-
tion — this is not useful on its own, but will come in handy
later. The following is executed for each state i.

a← argmax
a

Aa(i+ 1, :)M(k)[1, 0, . . . , 0]>;

M(k+1)(i+ 1, :)← Aa(i+ 1, :)M(k) (2)

We note that the multiplication M(k)[1, 0, . . . , 0]> simply
extracts the total reward in the modelM(k) (the current value
function) — hence eq. is equivalent to plain VI. However,
it serves an an important stepping stone to introducing sub-
goals, which is what we do next. Assume that we are, for the
moment, not interested in maximizing the overall reward. In-
stead, we want to reach some other arbitrary configuration of
states defined by the subgoal vector G of length n + 1. The
entry i + 1 of G defines the value we associate with reach-
ing state i. We will show later how picking such subgoals
judiciously can improve the speed of the overall algorithm.
Our new update, for subgoal G is the following, which we
execute for each state i.

a← argmax
a

Aa(i+ 1, :)M(k)G;

M(k+1)(i+ 1, :)← Aa(i+ 1, :)M(k) (3)

This iteration converges (Silver and Ciosek 2012) to a model
M∞, which corresponds to the policy for reaching the sub-
goal G. However, this policy executes continually, it does
not stop when a state with a high subgoal value of G(i+ 1)
is reached. We will now fix that by introducing the possi-
bility of termination — in each state, we first determine if
the subgoal can be considered to be reached and only then
do we make the next step. This is a two-stage process, given
below. First, we compute the termination condition β(i) for
each state i, according to the following equation.

β(k)(i)← argmax
β(k)(i)∈[0,1]

β(k)(i)G(i+ 1) +

(1− β(k)(i))M(k)(i+ 1, :)G (4)

We note that this optimization is of a linear function, there-
fore we will either have β(k)(i) = 1 (terminate in state i), or
β(k)(i) = 0 (do not terminate in state i). Conceptually, this
update can be thought of as converting the non-binary sub-
goal specification G into a binary termination condition β.
Once we have computed β(k), we define the diagonal matrix
β(k) = diag(1, β(k)(1), β(k)(2), . . . , β(k)(n)) as well as the
new matrix B as follows.5

B(β(k),M(k)) = β(k)I + (I − β(k))M(k)

Here, I is the identity matrix.B summarizes our termination
condition — it behaves like model M(k) for the states where
we do not terminate and like the identity model for the states
where we do. Once we have this, we can define the actual
update, which is executed for each state i.

a← argmax
a

Aa(i+ 1, :)B(β(k),M(k))G;

M(k+1)(i+ 1, :)← Aa(i+ 1, :)B(β(k),M(k)) (5)

By iterating this many times, we can obtain M∞, which will
tend to go from every state to states with high values of the
subgoal G. The elements of G are specified in the same
units as the rewards — i.e. this algorithm will go, for the
non-terminating states, to a state with a particular value of
the subgoal if the value of being in the subgoal exceeds the
opportunity loss of reward on the way. For the terminating
states, the model will still make one step according to the
induced policy (see discussion in section).

There is one more way we can speed up the algorithm
— through the introduction of initiation sets. In this case,
instead of selecting an action from the set of all possible
actions, we only select an action from the set of allowed
actions for a given state (the initiation set). More formally,
let Sa(i) be a boolean vector which has ‘true’ in the entries
where action a is allowed is state i and ‘false’ otherwise.
Equation then becomes the following.

a← argmax
a:Sa(i)

Aa(i+ 1, :)B(β(k),M(k))G;

M(k+1)(i+ 1, :)← Aa(i+ 1, :)B(β(k),M(k)) (6)

The benefit of using initiation sets is that by not considering
irrelevant actions, the whole algorithm becomes much faster.
We defer the definition of initiation sets used to section .

Finally, we solve for several subgoals simultaneously. We
use the current state of every model in every iteration, to
compute the next iteration for both itself and other mod-
els. Denote our subgoals by G(1), G(2), . . . , G(g) and the k-
th iteration of the models trying to solve these subgoals by
M

(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k) . Define the set Ω(k) as the set of all

models (macro-actions) allowed at iteration k, i.e. Ω(k) =

{A1, A2, . . . , Al,M
(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k)}. This gives rise to

the update given below, for each subgoal q and for each state

5The reader will notice that our matrix B can be under-
stood to be the expected model given the termination condition:
B(β(k),Mk) = Eβ(k)

[I,M(k)]. However, in our algorithm it is
enough to consider it just a matrix.

i. We now compute the termination condition.

β
(q)
(k)(i)← argmax

β(k)(i)∈[0,1]

β(k)(i)G
(q)(i+ 1) +

(1− β(k)(i))M
(q)
(k)(i+ 1, :)G(q)

(7)

The we compute one step of the algorithm according to the
equation.

O ← argmax
O∈Ω(k)

O(i+ 1, :)B(β
(q)
(k),M

(q)
(k))G(q);

M
(q)
(k+1)(i+ 1, :)← O(i+ 1, :)B(β

(q)
(k),M

(q)
(k)) (8)

Solving several subgoals simultaneously can improve the al-
gorithm (Silver and Ciosek 2012). The immediate availabil-
ity of the partial solution to every subgoal leads to faster
convergence. In other words, this feature can be used to con-
struct the macro-operator hierarchy at run time of the algo-
rithm.6 This is in contrast to many other approaches, where
the hierarchy is fixed before the algorithm is run.

Combining State Aggregation and Options
We saw in section that given the aggregation7 matrix Φ and
the disaggregation matrix D, we can convert an action with
the transition matrix P and expected reward vector R to an
aggregate MDP by using P̃ = DPΦ and R̃ = DR. In our
matrix model notation, this becomes as follows.

Ã =

[
1 0
0 D

]
A

[
1 0
0 Φ

]
, where A =

[
1 0
R P

]
(9)

This can be viewed as compressing the dynamics, given
our aggregation architecture Φ of size n × m, where m is
the number of the aggregate states. We stress that the com-
pressed dynamics define a valid MDP — therefore the algo-
rithms described in the previous section are convergent.

The main idea of our algorithm is the following: define
a subgoal, solve it (i.e. obtain a model for reaching it) and
then add it to the action set of the original problem and use
it as a macro-action, gaining speed. We repeat this for many
subgoals. Solving subgoals is fast because we do it in the
small, aggregate state space. To be precise, we pick a sub-
goal G̃ (see section for examples) and an approximation
architecture Φ. We then compress our actions with eq. 9 and
use compressed actions in VI according to eqs. 4 and . This
gives us a model M̃∞ solving the subgoal in the aggregate
state space. We want to use this model to help solve the orig-
inal MDP.

However, we cannot do this directly since our model M̃∞
is defined with respect to the aggregate state space and has

6By this we mean that the option models are built up in run
time, possibly using other models. The subgoals are pre-defined
and constant.

7In the work done in this paper, we used hard aggregation so
that each row of Φ contains a one in one place and zeros elsewhere,
and the matrix D is a renormalized version of Φ>, so that the rows
sum to one.

size (m+ 1)× (m+ 1) — we need to find a way to convert
it to a model defined over the original state space, of size
(n + 1)× (n + 1). The new model also has to be valid, i.e.
correspond to a sequence of actions.8

The idea is to make the following transformation: from
the aggregate model, we compute the option in the aggre-
gate state space, we then up-scale the option to the original
state space, construct a one-step model and then construct
the long-term model from it. Concretely, we first compute
the option corresponding to the model M̃∞. The option con-
sists of the policy µ and the termination condition β. We
obtain the termination condition by using eq. 4 for the ag-
gregate states. The policy µ is obtained greedily for each
aggregate state x.

µ(x) = argmax
c

Ãc(x+ 1, :)B(β, M̃∞)G̃ (10)

Now, we can finally build a one-step model in terms of the
original state-space. We do this according to the following
equation, which we use for each state i.

M ′(i+ 1, :) = (1− β(φ(i))) Aµ(φ(i))(i+ 1, :) +

β(φ(i)) I(i+ 1, :) (11)

In the above, we denote by I the identity matrix of size
(n+1)×(n+1) and by φ(i) the aggregate state correspond-
ing9 to the original state i. In more understandable terms,M ′
has rows selected by the policy µ wherever the option does
not terminate and rows from the identity matrix wherever it
does. Now, we do not just need a model that takes us one
step towards the subgoal — we want one that takes us all the
way. Therefore, we continually evaluate the option by expo-
nentiating the model matrix, producingM ′∞. Now, this new
model still has rows from the identity matrix where the op-
tion terminates — therefore it does not correspond to a valid
combination of primitive actions. To solve this problem, we
compute M ′′, according to the following equation (for each
state i).

M ′′(i+ 1, :) = (1− β(φ(s))) M ′∞(i+ 1, :) +

β(φ(s)) Aµ(φ(s))(i+ 1, :) (12)

M ′′ contains rows from M ′∞ where the option does not ter-
minate and rows dictated by the option policy where it does.
This guarantees it is a valid combination of primitive actions
and can be added to the action set and treated like any other
action. We now run value iteration (equation 1) using the
extended action set — the original actions and the subgoal
models (M ′′)(q) corresponding to each subgoal q. This is s
faster than using the original actions alone, even after fac-
toring in the time used to compute the subgoal models (see
section).

8That is why it is not possible to just upscale the model by writ-

ing:
[

1 0
0 Φ

]
M̃∞

[
1 0
0 D

]
.

9Note that the equation could be easily generalized to the case
where the aggregation is soft — i.e. there are several aggregate
states corresponding to i, simply by summing all the possibilities
as weighted by the aggregation probabilities.

Observation 1. Value Iteration with the action set A ∪
{(M ′′)(1), . . . , (M ′′)(g)} converges to the optimal value
function of the MDP.

Proof outline. The addition of subgoal macro-operators to
the action set does not change the fixpoint of value iteration
because the macro-operators are, by construction, compo-
sitions of the original actions. See supplement to existing
work (Silver and Ciosek 2012) for a formal proof of a more
general proposition.

This observation tells us that our algorithm will always
exactly solve the MDP, computing V ?. The worst thing that
can happen is that the subgoal macro-operators will be use-
less i.e. the resulting value iteration will take as many itera-
tions as without them.

Why not Use Linear Features
Looking at eqn. 9 one may ask if this is the best way
to compress actions. It may seem that using linear fea-
tures (De Farias and Van Roy 2000; Lizotte 2011; Van Roy
2005) may be better because they are more expressive and
easier to come up with than Φ and D. Specifically, con-
sider the following way of compressing actions, as an al-
ternative to eq. 9. Define the approximation architecture
V̆ = Ψw for modelling value functions, the sequence of
which will converge to the optimal value function. We be-
gin by defining the projection operator (Parr et al. 2008;
Sorg and Singh 2010) that compresses a table-lookup model
M into a model that works with linear features,

M̆Ψ,Ξ(M) =

[
1 0
0 Π-

]
M

[
1 0
0 Ψ

]
(13)

In the above, Π- = (Ψ>ΞΨ)−1Ψ>Ξ, and Ξ is a diagonal
matrix with entries corresponding to a distribution over the
original states of the MDP. We introduce names for the mi-

nor matrices of the models: M̆Ψ,Ξ(M) =

[
1 0
q F

]
and

M =

[
1 0
R P

]
. We note that eq. 13 ensures that the

model M̆Ψ,Ξ(M) is the best approximation of the model
M in the sense that it solves the optimization problems:10

F = argminF ‖ΨF −PΨ‖Ξ and q = argminq ‖Ψq−R‖Ξ.
In the above, the optimization is applied to the transition
and reward components separately; also, each column of F
is treated independently of the others. The semantics of the
above is as such: each column k of F should be such as to
make the entry s of the corresponding k-th column of ΨF
as close as possible to the feature number k of the next state,
where the index of the current state is s. Similarly, Ψq is
picked so as to approximate the expected next reward for
each state. In other words, F is a linear dynamical system
that models the one-step dynamics on features of the Markov
chain corresponding to an action. One might hope that this
F and q linear dynamical system could be used in much the

10The norms are defined in the following way: ‖V ‖Ξ =√
V >ΞV and ‖A‖Ξ =

√
trace (A>ΞA) .

Figure 1: Run-times of our algorithm, plain VI and model
VI. All algorithms compute V ?.

options +
Domain plain VI model VI aggr.
Taxi (determ.) 6.43 s. 11.64 s. 4.57 s.
Taxi (stoch.) 8.30 s. 47.80 s. 4.83 s.
Hanoi (determ.) 23.45 s. 51.65 s. 11.57 s.
Hanoi (stoch.) 27.31 s. 357.52 s. 21.71 s.
8-puzzle (determ.) 100.19 s. 221.20 s. 85.94 s.

same way as the MDP compressed with state aggregation to
P̃ and R̃.

But there is a problem with the compressed models de-
fined according to eq. 13. Consider an action with the transi-
tion matrix and approximation architecture Ψ given below.

P = γ


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

; Ψ =


1 1
1 0
0 1
0 0

; F = γ
1

3

[
2 3
2 0

]
It can be easily shown that this, paired with a uniform dis-

tribution Ξ, produces the matrix F given above. But this ma-
trix has spectrum outside of the unit circle for some γ < 1 —
hence if this action is composed with itself time and again,
the VI algorithm will diverge. The argument given above
shows that we cannot use eq. 13 for arbitrary features Ψ and
distributions Ξ. On the other hand, our framework based on
eq. 9 does not suffer from the described divergent behaviour.
Also, it does not depend on any distribution over the states,
meaning there is one less parameter to the algorithm.

Experiments
We applied our approach to three domains: Taxi, Hanoi and
8-puzzle. In each case we compared several variants of VI,
including our approach combining state aggregation and op-
tions. For vanilla VI we considered algorithms based on both
eq. 1 (the familiar algorithm, denoted plain VI) and eq.
(model VI, where complete models are constructed). Figure
1 summarises the solution times for each domain; more de-
tails are given in the following domain-specific subsections.
We, however, stress beforehand that our algorithm produced
a speeed-up for each of the domains we tried.

The TAXI Problem
TAXI (Dietterich 1998) is a prototypical example of a prob-
lem which combines spatial navigation with additional vari-
ables. Denote the number of states as n (here n = 7000 + 1)
and the number of aggregate states as m (here m = 25 + 1).
The one state is the sink state.

In our first experiment, we ran four algorithms comput-
ing the same optimal value function., one for each combina-
tion of using (or not) state aggregation and options. Consider
using neither aggregation nor options — this is model VI,
one iteration of which has a complexity of O(n2|A| + n3),
in practice it is O(n|A|) because of sparsity. It takes 22 it-
erations to complete. Now consider the version with sub-
goals but no aggregation. Here, we have 5 subgoals: one
for getting to each pick-up location or the fuel pump. An

iteration now has complexity O(g((|A| + g)n2 + n3)). Be-
cause of sparsity, this becomes O(g((|A| + g)n + n)) =
O(g((|A| + g)n). The algorithm needs 8 iterations less to
converge, because subgoals allow it to make jumps. How-
ever, due to the increased cost of each iteration, the time
required to converge increased. Now look at the version
with aggregation (see section) and no options. There are
26 aggregate states. We map each original state to one of
25 states by taking the taxi position and ignoring other vari-
ables. Sink state (state 7001) gets mapped to the aggregate
sink state (state 26). We proceed in two stages. First, all ac-
tions are compressed (eq. 9). Then, the problem is solved
using model VI in this smaller state-space. This takes 330
iterations, but is fast because m is small — the complexity
is O(m2|Ã|+m3). We then obtain the value function of the
aggregate system and upscale it, then we use the new value
function to obtain a greedy model (i.e. each row comes from
the action that maximizes that row times V̄), which we use
as initialization in our iteration, which takes 3 iterations less
than our original algorithm. Now consider the final version,
where the benefits of aggregation and options are combined.
Again, the algorithm consists of two stages. First, we use
compressed actions to compute models for getting to the five
subgoals. This requires 17 iterations; the complexity of each
is O(g((|Ã|+ g)m2 +m3)), where g = 5. This is fast since
m is small. We now upscale these models. We see that if
we add the five macro-actions, we do not need the original
four actions for moving, as all sensible movement is to one
of the five locations. The algorithm now takes only 7 iter-
ations to converge.11 The run-time12 is 6.55 s, i.e. a speed-
up of 1.8 times over model VI. Results for all four versions
are summarized in figure 2. We also constructed a stochastic
version of the problem, with a probability of 0.05 of staying
in the original state when moving. Results are qualitatively
similar and are in figure 2. The speed-up from combining
options with aggregation was greater at 7.1 times. We stress
the main result.13 In the deterministic case, we replace many
O(n) iterations with many O(m3) iterations followed by few
O(n) iterations. For stochastic problems, we replace many
O(n3) iterations with many O(m3) iterations followed by
few O(n3) iterations.

In our second experiment, as a digression from the main
thrust of the paper, we tried a different approach: we can use
the aggregation framework to compute an approximate value
function, gaining speed. Our actions are compressed as de-
fined by eq. 9, and we simply apply eq. 1. This process gives
us a value function Ṽ ? defined over the aggregate state space
(in the first case we need to extract it from the reward part
of the model). We upscale this value function to the original

11We need an iteration to: (1) go to the fuel pump, (2) fill in fuel,
(3) go to passenger, (4) pick up passenger, (5) go to destination, (6)
drop off passenger. The 7th iteration comes from the termination
condition.

12This is slightly different from the result in fig. 1 since after
the models have been upscaled, we can proceed either with plain
VI (as is fig. 1) or with model VI, which we do here to make the
comparison fair.

13If the number of subgoals and actions is constant.

Figure 2: Run-times of the algorithm in the deterministic and
stochastic versions of TAXI .

deter. no aggreg. aggregation
no options 22 iter. 330 + 19 iter.

11.64 s. 11.73 s.
options 14 iter. 17 + 7 iter.

78.20 s. 6.55 s.

stoch. no aggreg. aggregation
no options 30 iter. 331 + 28 iter.

47.80 s. 26.04 s.
options 18 iter. 20 + 7 iter.

256.04 s. 6.78 s.

states using the equation V̄ =

[
1 0
0 Φ

]
Ṽ ?. Of course, the

obtained value function V̄ is only approximately optimal in
the original problem. Consider a Φ with 501 aggregate states
— the aggregation happens by eliminating the fuel variable
and leaving others intact. The algorithm used is given by eq.
, applied to compressed actions. It takes 2.94 s / 28 iterations
to converge (determ.) and 3.08 s / 30 iterations (stoch.). The
learned value function corresponds to a policy which ignores
fuel, never visits the pump, but otherwise, if there is enough
fuel, transports the passenger as intended. We have shown
an important principle — if we have an aspect of a system
that we feel our solution can ignore, we can eliminate it and
still get an approximate solution. The benefit is in the speed-
up. — in our case, with respect to solving the original MDP
using plain VI, it is 2.2 (determ.) / 2.7 (stoch.).

The Towers of Hanoi
For r disks, our state representation in the Towers of Hanoi
is an r-tuple, where each element corresponds to a disk and
takes values from {1, 2, 3}, denoting the peg.14 There are
three actions, two for moving the smallest disk and one for
moving a disk between the remaining two pegs. It is known
that VI for this problem takes 2r iterations to converge. To
speed up the iteration, we introduced the following state ab-
straction. There are r − 2 sub-problems of size 2,...,r − 1.
First, we solve the problem with 2 disks, i.e. our abstrac-
tion only considers the position of the two smallest disks,
ignoring the rest. There are three subgoals, one for placing
the two disks on each of the pegs. Then, once we obtained
three models for the subgoals, we use them to solve the sub-
problem of size 3, ignoring all disks except the three small-
est ones. Again, there are three subgoals. We proceed until
we solve the problem with r disks. For each subgoal, we
need 4 iterations (Three moves and the 4th is required for
the convergence criterion). The total number of iterations is
4 × 3 × r, i.e. it is linear in the state space. For 8 disks this
means the following speed-up: 11.57 s (with subgoals) vs.
51.65 s (model VI) vs. 23.45 s (plain VI). We note however,
that the time complexity of the algorithm with subgoals is
still exponential in r, because whereas the number of itera-

14Note that the state representation itself disallows placing a
larger disk on top of a smaller one.

Figure 3: The subgoal used and run-times for the 8-puzzle.
All algorithms compute V ?.

iter. time elapsed
model VI 32 221.20 s.

plain VI 33 100.19 s.
subgoal 25 109.51 s.

subgoal w. init. set 25 85.94 s.

A A A
B B B
C C

tions is only linear, in each iteration we need to iterate the
whole state space, which is exponential.15 For a stochastic
version, the run-times were 357.52 s for model VI, 27.31
s for plain VI and 21.71 s for computing the same optimal
value function with options with aggregation.

The 8-puzzle
The 8-puzzle (Story 1879; ?) is well-known in the planning
community. Our subgoal is shown in figure 3.16 ‘A’,‘B’, and
‘C’ denote groups of tiles. The subgoal consists in arranging
the tiles so that each group is in correct place (but tiles within
each group are allowed to occupy an incorrect place). The
matrix Φ is such that the original configuration of the tiles
is mapped onto one where each tile is only marked with the
group it belongs to. Using the subgoal alone did not result in
a speed-up, so we used the notion of initiation sets (Sutton,
Precup, and Singh 1999). We trained the subgoal for 9 iter-
ations (the number 9 was obtained by trial and error), so the
obtained model is only able to reach the subgoal for some
starting states (the ones at most 9 steps away from the sub-
goal in terms of primitive actions). We upscaled the model,
but this time the new model had an initiation set containing
only those states from which the subgoal is reachable. The
iteration we then used is plain value iteration, extended to
initiation sets. The intuition behind initiation sets is that it
only makes sense to use a subgoal if we are already in a part
of the state space close to it. Thus, we obtained a total run-
time of 85.94 seconds, which amounts to a speed-up of 1.17
over plain value iteration. The results are in figure 3.

Conclusions
We introduced new Bellman optimality equations that fa-
cilitate VI with options. These equations can be combined
with state aggregation in a sound way, and therefore can be
applied to the solution of medium-sized MDPs.17 This is
the first algorithm combining options and state abstraction
which is guaranteed to converge. This is notable because
other proposed approaches, notably based on linear features,

15However, this problem is not particular to our approach — ev-
ery algorithm that purports to compute the value function for each
state will have computational complexity at least as high as the
number of such states.

16Other subgoals are shown in the documentation accompany-
ing the source code. Please also consult the source code, where all
subgoals are implemented.

17We provide software used in our experiments under GPL in
the hope that others may use it for their problems.

are known to diverge even for small problems. Finally, we
have shown experimentally that the benefits of options and
state aggregation are only realized when they are applied to-
gether.

References
Andre, D., and Russell, S. J. 2002. State abstraction for pro-
grammable reinforcement learning agents. In AAAI Confer-
ence on Artificial Intelligence / Annual Conference on Inno-
vative Applications of Artificial Intelligence, 119–125.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ,
USA: Princeton University Press.
Bertsekas, D. P. 2012. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific Belmont.
De Farias, D. P., and Van Roy, B. 2000. On the existence
of fixed points for approximate value iteration and temporal-
difference learning. Journal of Optimization Theory and Ap-
plications 105:589–608.
Dietterich, T. G. 1998. The MAXQ Method for Hierarchi-
cal Reinforcement Learning. In International Conference on
Machine Learning, 118–126.
Hengst, B. 2002. Discovering hierarchy in reinforcement
learning with HEXQ . In International Conference on Ma-
chine Learning, volume 2, 243–250.
Jong, N. K., and Stone, P. 2005. State Abstraction Discov-
ery from Irrelevant State Variables. . In International Joint
Conferences on Artificial Intelligence, 752–757.
Jonsson, A., and Barto, A. G. 2001. Automated state ab-
straction for options using the U-tree algorithm. Advances in
neural information processing systems 1054–1060.
Konidaris, G., and Barto, A. G. 2007. Building Portable Op-
tions: Skill Transfer in Reinforcement Learning. . In Interna-
tional Joint Conferences on Artificial Intelligence, volume 7,
895–900.
Korf, R. 1985. Learning to Solve Problems by Searching for
Macro-Operators. Research Notes in Artificial Intelligence,
Vol 5. Pitman.
Lizotte, D. J. 2011. Convergent fitted value iteration with lin-
ear function approximation. In Shawe-Taylor, J.; Zemel, R.;
Bartlett, P.; Pereira, F.; and Weinberger, K., eds., Advances in
Neural Information Processing Systems 24. 2537–2545.
Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and
Littman, M. L. 2008. An analysis of linear models, linear
value-function approximation, and feature selection for rein-
forcement learning. In Proceedings of the 25th international
conference on Machine learning, ICML ’08, 752–759. New
York, NY, USA: ACM.
Precup, D.; Sutton, R. S.; and Singh, S. 1998. Theoretical re-
sults on reinforcement learning with temporally abstract op-
tions. In Machine Learning: ECML-98, volume 1398 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg.
382–393.
Ribas-Fernandes, J. J.; Solway, A.; Diuk, C.; McGuire, J. T.;
Barto, A. G.; Niv, Y.; and Botvinick, M. M. 2011. A neu-
ral signature of hierarchical reinforcement learning. Neuron
71(2):370–379.
Silver, D., and Ciosek, K. 2012. Compositional planning us-
ing optimal option models. In 29th International Conference
on Machine Learning.
Sorg, J., and Singh, S. 2010. Linear options. In Pro-
ceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: Volume 1 - Volume 1, AA-
MAS ’10, 31–38. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.
Story, W. E. 1879. Notes on the “15” puzzle. American
Journal of Mathematics 2(4):397–404.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction
in Reinforcement Learning. Artificial Intelligence 112:181–
211.
Sutton, R. S. 1995. TD Models: Modeling the World at
a Mixture of Time Scales . In Proceedings of the Twel-
veth International Conference on Machine Learning, 531–
539. Morgan Kaufmann.
Van Roy, B. 2005. TD(0) Leads to Better Policies than
Approximate Value Iteration . In Weiss, Y.; Schölkopf, B.;
and Platt, J., eds., Advances in Neural Information Processing
Systems 18. 1377–1384.
Wang, H.; Li, W.; and Zhou, X. 2012. Automatic discovery
and transfer of maxq hierarchies in a complex system. In
ICTAI, 1157–1162.

Appendix
In this appendix, we discuss background information con-
cerning state aggregation for MDPs, adapted to the notation
of our paper. This is necessary because Bertsekas’ original
notation is difficult to apply to our work. We stress that the
ideas presented in this appendix are entirely due to Bertsekas
(Bertsekas 2012).

We are concerned with an MDP which has |A| actions,
and for an action a the probability transition matrix is Pa,
defined by Pa(i, j) = γPr(it+1 = j|it = i, at = a) and
the vector of expected rewards for each state is Ra, de-
fined by Ra(i) = E [rt|it = i, at = a]. There are m aggre-
gate states. In addition, we introduce two matrices18 defin-
ing the approximation architecture: the aggregation matrix
Φ and the disaggregation matrix D. The matrix Φ has di-
mensions n × m and the matrix D has dimension m × n.
It is useful to think about these matrices as conversion op-
erators: the matrix Φ converts a value function defined over
the aggregate states into one defined over the original states;
conversely, the matrix D converts a value function defined
over the original states into one defined over the aggregate
states. There are no conditions on these matrices other than
the rows have to sum to one, as they are probability distri-
butions modeling, for Φ, the degree by which each state is
represented by various aggregate states and, for D, the de-
gree to which a certain aggregate state corresponds to vari-
ous original states. Having defined the matrices, we can de-
fine our first approximation step. The Bellman optimality
operator in the original MDP is called T , and is defined by
(TV)(i) = maxa(PaV)(i) +Ra(i) and the optimum value
function V ? satisfies the fixpoint equation V ? = TV ?. Now,
the approximation consists in solving the following equation
instead (we will see later that this is not solved exactly and
further approximation is necessary).

Ṽ ? = DT (ΦṼ ?) (14)

18We employ the names introduced by Bertsekas (Bertsekas
2012).

In the above, we use ·̃ to denote the aggregate problem.
We note that this equation operates on a shorter value func-
tion — Ṽ ? has entries corresponding to aggregate states.
The idea is, of course that the number of aggregate states is
tractable, so we can compute Ṽ ?. However, we need to re-
formulate the equation since in its present form it contains
the operator T , which still operates on the original states. To
do so, we expand the definition of T , to obtain the following
state-wise equation, for the aggregate state x.

Ṽ ?(x) =
∑
i

dxi

(
max
a

Pa(i, :)ΦṼ ? +Ra(i)
)

This equation leads to the following iterative algorithm,
which computes Ṽ ? as k →∞.

Ṽ(k+1)(x) =
∑
i

dxi

(
max
a

Pa(i, :)ΦṼ(k) +Ra(i)
)

In the above, Pa(i, :) denotes the row number i of the prob-
ability transition matrix corresponding to action a (in terms
of the original states). Value functions are assumed to be col-
umn vectors. In order to be able to operate exclusively with
objects that have dimensionality corresponding to the num-
ber of aggregate states, we introduce another approximation
and namely we do the following.

Ṽ(k+1)(x) = max
a

∑
i

dxi

(
Pa(i, :)ΦṼ(k) +Ra(i)

)
We note that this approximation is exact if states mapping
to a single aggregate state all have the same optimal action.
Now, we can reformulate the equation in the following way.

Ṽ(k+1)(x) = max
a

D(x, :)PaΦṼ(k) +D(x, :)Ra

= max
a

(P̃aṼ(k))(x) + R̃a(x) (15)

In the above, D(x, :) denotes the row of D corresponding to
aggregate state x and Pa is the probability transition matrix
corresponding to action a in the original MDP. Now, we note
that solving the above equation is equivalent to solving a
modified MDP with actions corresponding to the original ac-
tions, probability transition matrices given by P̃a = DPaΦ
and expected reward vectors given by R̃a = DRa. The
states of the modified MDP are the aggregate states.

Therefore, under our two explained approximations, solv-
ing the original MDP may be replaced by solving a much
smaller aggregate MDP, by computing P̃a and R̃a. The so-
lution can then be computed by any known algorithm, al-
though in this paper we focus only on VI. We emphasize that
the VI is convergent because the matrices P̃a and R̃a define
a valid MDP. We stress again that this involves two approx-
imations: first, we are solving a modified Bellman equation
14 that utilizes state aggregation and second, we move the
max operator outside of the sum in equation 15.

